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1 Introduction

Households are subject to sources of risk that extend beyond aggregate risks. Private events such
as job displacement can have large and persistent effects on household earnings. These events
are hard to insurance against (Blundell, Pistaferri, and Preston, 2008). Exposure to idiosyncratic
tail risks can therefore drastically change the consumption and saving decision of market
participants. Recent empirical studies show strong state dependency in the amount of tail risk
at the individual level: the skewness of earnings growth rates is procyclical (Guvenen, Ozkan,
and Song, 2014), and recessions are times when the cross-sectional distribution of income growth
displays particularly severe left-tail risk. This cyclicality implies that workers face additional
risks coming from individual exposures in times of economic distress.

In this paper, I propose time-varying idiosyncratic risk in labor income as a key driver of
asset prices and macroeconomic quantities in a production-based economy. A growing literature
documents the importance of aggregate demand-based risks for asset prices. Asset prices are
highly responsive to changes in monetary policy (Bernanke and Kuttner, 2005), and nominal
rigidities can give rise to a substantial equity premium in equilibrium models (Li and Palomino,
2014). In the cross section of stocks, recent work shows that exposure to demand shocks is
compensated with a risk premium: Weber (2015) finds that firms with more sticky prices earn
higher average returns, and Clara (2019) finds that heterogeneity in demand elasticities is priced
across stocks. An open question is what the source of demand fluctuations is that drives asset
prices. I build a general equilibrium macroeconomic model where the aggregate demand for
consumption goods is driven by a time-varying precautionary saving motive due to uninsured
income risks. The direct effects of income tail risk are on the marginal consumer – not necessarily
the marginal investor – that trades off consumption versus saving. Demand fluctuations due to
income tail risk generate cyclicality in firm cash flows. This risk exposure, that is heterogeneous
across firms, is compensated by a significant and countercyclical risk premium in equity returns.
Empirical asset pricing tests show support for this channel.

The model features heterogeneous agents and heterogeneous firms and builds on the basic
multi-sector New Keynesian model from Carvalho (2006) where firms face nominal rigidities
in price setting. Asset markets are segmented and agents face idiosyncratic permanent shocks
to labor income. Stockholders own shares of the output-producing firms and have access to a
complete market that allows for full risk sharing of non-systematic shocks. Non-stockholders
cannot diversify idiosyncratic risks in their labor income and are subject to countercyclical tail
risk in individual income growth rates. They do not participate in equity markets and only
trade nominal risk-free bonds in zero net supply, so that they are hand-to-mouth in equilibrium.
While these non-stockholders do not price returns on traded assets, their consumption demand is
important for the profits of the firms that are distributed to the stockholders.

In the model, asset prices fluctuate with changes in idiosyncratic income tail risk over time.
Increased background risk calls for an increase in savings to self-insure against the shocks that are
ex-post concentrated on a small number of non-stockholders, and leads uninsured households to
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reduce present consumption. Faced with a reduced demand, optimal firm prices change. Since
the prices of consumption goods are rigid, output falls and price dispersion rises. As a result, firm
earnings are sensitive to changes in individual tail risk. The model has four main implications.

First, not all firms are affected equally by income risk fluctuations: exposure to demand shocks
varies across firms. Firms are heterogeneous in the elasticity of demand for the consumption good
that they produce. In sectors where demand is highly elastic, optimal prices change by more in
response to demand shocks. Nominal rigidities then imply that prices are more dispersed in these
sectors. Firms with more elastic demand are therefore more exposed to fluctuations in the amount
of idiosyncratic income risk and have more volatile cash flows.

Second, firm exposure to variation in idiosyncratic income risk over the business cycle is
priced. Stockholders price stocks in a standard way. While stockholders are not directly affected
by income risk, their consumption suffers from an increase in income risk due to reduced firm
profits as a result of depressed aggregate demand. Because equity ownership is concentrated
among stockholders, their consumption can fall by even more than that of non-stockholders. With
external habit preferences, the marginal utility of stockholders spikes when income risk increases.
Time-varying income risk thus creates additional return volatility, which leads to a substantial
equity premium in the model. A realistic amount of idiosyncratic risk taken directly from the data
translates into an equity premium of 7.5%. Since high-elasticity firms are more affected by demand
shocks, there is also a substantial cross-sectional premium for high-elasticity firms relative to low-
elasticity firms of more than 2.5%.

Third, asset returns are predictable by the current level of idiosyncratic income risk. This
predictability arises from endogenous countercyclical volatility in demand shocks. Since marginal
utility is convex, the precautionary savings motive is nonlinear in the amount of idiosyncratic risk.
When idiosyncratic risk is high, the precautionary motive spikes. Any additional shocks to income
risk then lead to large changes in demand for consumption goods. While in the model uncertainty
about future idiosyncratic risk is constant over time, the volatility of demand shocks from changes
in idiosyncratic income shocks is countercyclical. Hence, the model generates predictability of
asset returns by idiosyncratic risk without needing time variation in higher-order moments of
income risk.1

Fourth, the predictability of stock returns by the level of idiosyncratic income risk is
heterogeneous across firms. Firms with more elastic demand are more exposed to changes in
income tail risk and therefore have a bigger increase in the risk premium when tail risk in labor
income rises.

In empirical tests, I find support for these four model predictions. A benefit of the idiosyncratic
risk channel is that income tail risk is relatively well measurable from cross-sectional data. I use
two measures of idiosyncratic income risk. First, I directly estimate a process for time-varying

1In contrast, endowment economy models where covariation between stock market returns and idiosyncratic
consumption risk of the marginal investor is the source of the equity premium require time-varying uncertainty on
future idiosyncratic risk (i.e., at least the fourth moment of individual income growth rates) to generate predictability
in stock returns.
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skewness in permanent income growth rates, targeting the moments reported by Guvenen et al.
(2014) using the approach of McKay (2017). Second, I use initial claims for unemployment benefits
relative to the size of the labor force as a proxy for income tail risk, as proposed by Schmidt (2016),
which has the benefits that it is available at a higher frequency and in real time.

To test the model prediction that heterogeneity in firm exposure to idiosyncratic income risk
shocks is priced in equity markets, I follow a large asset pricing literature by sorting firms into
portfolios. I consider a new cross section of firms that differ substantially in their business cycle
exposures by sorting firms based on the beta of their stock returns to a tradable proxy for demand
shocks: the return differential between firms that produce durable goods and firms that produce
nondurables and services, which I label as the Durables Minus Nondurables and Services (DMNS)
factor. I follow Gomes, Kogan, and Yogo (2009) in classifying industries by the durability of their
output. It is well known that the demand for durable goods is more affected by macroeconomic
shocks to aggregate demand than the demand for services (see e.g. Bils, Klenow, and Malin, 2012).
Indeed, I find that the DMNS return factor is significantly negatively correlated with fluctuations
in the amount of idiosyncratic income risk in the data.

Sorting firms in quintile portfolios based on their exposure to the DMNS factor, I find that
firms with a high exposure to the DMNS factor have larger exposures to changes in income tail
risk and earn a statistically significant average excess return of several percentage points per year
over firms with a low exposure. The cross-sectional average return differential is not driven by
differences between producers of durable good (a stock variable) and producers of non-durable
goods (a flow), and holds in a within-industry sort. In firm-level panel regressions, I show that
the return differential by DMNS factor exposure is also robust to including controls for industry–
time fixed effects and other firm-level characteristics that are known to be associated with cross-
sectional differences in average returns (in particular, book-to-market values and size).

Using these DMNS beta-sorted quintile portfolios, I estimate the risk premia that are
associated with various potential risk factors. First, analyzing traded risk factors, I show that
the risk premium on the DMNS factor is indeed positive and statistically significant. While
market betas can also explain the differences in average returns, the DMNS factor dominates
in a joint estimation. In addition, the risk premium on the DMNS factor remains significant
when adding the returns on the standard Fama-French 25 portfolios to the sample and including
the Fama-French factors as additional risk factors, while the market risk premium becomes
insignificant or even negative. Second, I evaluate various macroeconomic (non-traded) factors.
Consistent with the main model predictions, I estimate a significant risk premium for exposure to
measured idiosyncratic income tail risk. The results are unique to the particular macroeconomic
measure of labor market frictions and therefore do not merely pick up general heterogeneity in
business cycle exposures.

In the model, heterogeneity in expected returns is due to heterogeneity in firm cash flow
exposures to income risk fluctuations that generate aggregate demand shocks. Indeed, in a direct
test of this cash flow channel, I find that firms with a high DMNS beta have cash flows that are
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highly exposed to changes in measured income tail risk, while firms with a low DMNS beta have
no such exposure. Like the results on equity returns, these differences in exposures continue to
hold in a within-industry portfolio sort. Consistent with a demand-based risk channel, I also find
that firms with high DMNS betas have stronger stock price responses to monetary policy surprises
than firms with low DMNS betas.

Finally, I examine time variation in risk and returns. Schmidt (2016) shows that the market risk
premium varies over time depending on the level of idiosyncratic income risk. Importantly, I find
that this predictability is strongly heterogeneous across firms. Firms with a high DMNS beta have
returns that are highly predictable by the level of income tail risk, while firms with a low DMNS
beta do not have predictable returns. The predictability increases monotonically with the DMNS
beta of the portfolio. My model provides an explanation for these predictability patterns based on
endogenous cash flow risk, without needing heteroskedasticity in income risk shocks. Consistent
with this channel, the conditional volatility of stock returns and the conditional volatility of cash
flow growth empirically vary with the current level of measured income risk for high-exposure
firms but not for low-exposure firms.

Literature. This paper is most closely related to two broad strands of the macro-finance
literature.

First, a recent literature in finance studies the asset pricing implications of price and wage
rigidities in production economies, building on a large literature in macroeconomics on the
price-setting behavior of firms over the business cycle. Using micro data on individual prices
underlying the U.S. consumer price index, Bils and Klenow (2004), Nakamura and Steinsson
(2008), and Klenow and Kryvtsov (2008) document a typical duration of regular prices of 4 to 11
months, with considerable heterogeneity across sectors. Gorodnichenko and Weber (2016) use
data on stock market returns around monetary policy announcements to show that sticky prices
are costly.

Uhlig (2007) and Favilukis and Lin (2016) introduce wage rigidities in production-based
models to explain asset pricing facts. Li and Palomino (2014) develop a New Keynesian asset
pricing model with sticky prices and sticky wages. Weber (2015) and Clara (2019) study
heterogeneity in firm equity returns in multi-sector models with nominal rigidities, supported by
empirical findings from micro data. Ozdagli and Velikov (2020) show that stocks with a higher
monetary policy exposure earn a lower rather than a higher risk premium, consistent with a
stabilizing role of monetary policy instead of being an independent source of risk. I contribute to
this literature by proposing variation in idiosyncratic risk as a main source of demand risk over
the business cycle and by testing the predictions of this New Keynesian model directly in data on
equity returns.

Second, my paper contributes to a literature on the aggregate implications of uninsurable
idiosyncratic risks. In the macroeconomic literature, studies of the impact of idiosyncratic risk
on business cycle fluctuations typically focus on relatively short-lived unemployment risk (see
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e.g. Krusell and Smith, 1998; Krueger, Mitman, and Perri, 2016). Standard models predict that
these are risks that many households, except those at the bottom of the wealth distribution, can
relatively easily self-insure against. However, recent income data as described in Guvenen et al.
(2014) shows that severe idiosyncratic income shocks in recessions are persistent. Persistent shocks
have very different implications in a macroeconomic model because they affect the behavior of
households across the whole distribution. McKay (2017) estimates a process for labor income
where idiosyncratic risks are permanent and shows that aggregate consumption can respond
strongly to increases in uncertainty about persistent labor market outcomes.2 Berger, Dew-Becker,
Schmidt, and Takahashi (2019) find substantial welfare benefits when monetary policy specifically
targets income tail risk. I extend the analysis of a time-varying precautionary saving motive due
to idiosyncratic risk by studying asset pricing implications in a model with nominal rigidities,
heterogeneous firms, and limited stock market participation.

The potential asset pricing implications of undiversifiable idiosyncratic risks have been
studied extensively in the finance literature, with seminal contributions from Mankiw (1986),
Heaton and Lucas (1996), and Constantinides and Duffie (1996).3 Constantinides and Ghosh
(2017) and Schmidt (2016) use statistics from rich micro data on income and consumption
to quantify this idiosyncratic risk channel. Herskovic, Kelly, Lustig, and Van Nieuwerburgh
(2016) consider the link with idiosyncratic stock price risk. These papers focus on asset
pricing implications when investors face countercyclical idiosyncratic consumption risks in an
endowment economy, in which case the comovement between stock prices and idiosyncratic
consumption risks for the marginal investor makes stocks less appealing relative to safer assets.
This relation directly leads to higher risk premia. In contrast, the model in this paper is focused
on the precautionary saving motive induced by idiosyncratic income risk, affecting firm earnings
through aggregate demand in a production economy with nominal rigidities. This different
channel allows me to derive new predictions on the cross section of asset returns and time
variation in expected returns.

My paper further builds on models of asset prices with limited stock market participation,
motivated by the observation that a substantial fraction of the population does not own any stocks.
Since equity holdings are concentrated in a subset of the population, the comovement between
firm payoffs and the consumption of stockholders is greater than the comovement between firm
payoffs and aggregate consumption, in particular since firm dividends are more volatile than
wage income. This effect helps towards explaining the equity premium. Empirical evidence for a
higher volatility and comovement of stockholder consumption goes back to Mankiw and Zeldes
(1991).4

2Challe and Ragot (2016), Ravn and Sterk (2017), Werning (2015), Den Haan, Rendahl, and Riegler (2018), and Bayer,
Lütticke, Pham-Dao, and Tjaden (2019) also study aggregate consumption implications of idiosyncratic risk due to a
precautionary saving motive.

3See also Cogley (2002); Constantinides (2002); Krebs (2003, 2007); De Santis (2007); Storesletten, Telmer, and Yaron
(2007), among others.

4Further empirical evidence is provided by Attanasio, Banks, and Tanner (2002); Parker (2001); Vissing-Jørgensen
(2002); Aı̈t-Sahalia, Parker, and Yogo (2004). Basak and Cuoco (1998); Heaton and Lucas (1999); Guvenen (2009);
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At a broader level, my analysis also relates to a literature started by Berk, Green, and Naik
(1999) and Gomes, Kogan, and Zhang (2003) that links heterogeneity in firm earnings and equity
returns to fundamental sources of risk exposures in the production process. Van Binsbergen (2016)
builds a model of good-specific habits that generates an endogenous relation between the demand
for goods and expected returns.

2 Fluctuations in Idiosyncratic Labor Income Risk

Recent data on the annual labor income of workers show that households are subject to substantial
idiosyncratic tail risk in labor earnings, and that the amount of idiosyncratic risk in labor income
fluctuates over the business cycle. Guvenen et al. (2014) report statistics on the cross section of
labor income growth rates of millions of US workers in administrative data. While the cross-
sectional standard deviation of income growth rates – controlling for standard life-cycle effects
– is nearly acyclical, the skewness of income growth rates is highly procyclical. In particular,
negative tail risk in labor income spikes during recessions.

To capture macroeconomic variation in the amount of idiosyncratic labor income risk that
workers face, I consider two macroeconomic indicators. The first measure, xt, is directly
estimated from statistics on the yearly distribution of individual income growth rates as reported
by Guvenen et al. (2014). I specify a model of individual labor income, where xt captures
time-series variation in the skewness in the cross-sectional distribution of income growth rates.
Following the approach of McKay (2017), I use a simulated method of moments (SMM) estimator
to estimate the income process by matching the cross-sectional moments of 1-year, 3-year, and
5-year income growth rates in the model to the corresponding empirical moments. The targeted
moments are the median, 10th percentile, and 90th percentile of the distribution of earnings
growth rates in each year. To be able to use a quarterly macroeconomic time series for individual
income risk in empirical tests and in an equilibrium model, while income is only observed at an
annual frequency, I simulate the labor income process at a quarterly frequency and aggregate to
annual observations when computing the moments.

The time series for xt is constructed by assuming that xt is a linear combination of
four quarterly labor market indicators: the short-term unemployment rate, the long-term
unemployment rate, average weekly hours, and initial claims to unemployment relative to the
labor force. The factor loadings for xt are then estimated together with the other parameters of the
income process. Appendix A.1 describes the estimation procedure in further detail. The resulting
path for xt, for the estimated weights on the indicators, is plotted as the solid line in Figure 1.
Consistent with the finding of Guvenen et al. (2014) that negative skewness in income growth
rates is countercyclical, the income tail risk measure peaks in recessions.

As a second measure of labor market uncertainty, I use the ratio of initial claims for

Polkovnichenko (2004); Gomes and Michaelides (2008); Favilukis (2013) analyze theoretical models with limited
participation.
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unemployment to the size of the labor force in isolation, as proposed by Schmidt (2016). Schmidt
(2016) shows that initial claims for unemployment – the rate of involuntary job losses in the US –
are closely related to tail risk in the distribution of labor earnings growth rates. I define the initial
claims measure iclt as the number of initial claims filed in that period relative to the total size
of the US workforce, after removing a low-frequency trend component, and normalized to have
the same mean and standard deviation as xt.5 In comparison to the measure xt that is directly
estimated based on individual income growth rates, the claims measure iclt has the benefits that
this proxy for labor income risk is available in real time and at a higher frequency.

The dashed line of Figure 1 plots the resulting series for iclt at a quarterly frequency. The
sample period for the two income risk measures is 1967–2019. Clearly, the two series xt and iclt
have a strong overlap: the quarterly correlation is 0.71.

3 General Equilibrium Model

I develop a dynamic New Keynesian general equilibrium model with households that are subject
to time-varying idiosyncratic income risk. The model features heterogeneous agents as well as
heterogeneous firms, in a tractable way. With heterogeneous agents and incomplete markets,
idiosyncratic risk generates variation in aggregate demand through a precautionary saving motive
due to imperfect risk sharing and therefore drives fluctuations in firm output and asset prices.
Heterogeneity in firm demand elasticity gives rise to cross-sectional variation in risk exposures
and expected returns.

In this section, I discuss the main setup and outcomes of the model. Appendix A.2 contains
further details and derivations.

3.1 Households

The economy is populated by a continuum of agents of two types ν ∈ {s, n}: stockholders in
the population subset Is, and non-stockholders in In. The population shares are assumed to
be constant and the total population size is normalized to unity. The measures of stockholders
and non-stockholders are denoted by δs and δn, respectively. Both types of agents provide
labor services and allocate their time between work and leisure. Households derive utility from
differentiated consumption goods and have additively separable utility in consumption and
labor.

Stockholders. Stockholders can trade any state-contingent claim among themselves and
therefore are fully insured against any idiosyncratic shocks. The objective of the representative

5Without detrending, the initial claims measure has a negative linear trend that is highly significant. To make sure
that the empirical results are not driven by this linear trend, I remove trends at a very low frequency by using a one-
sided HP filter with smoothing parameter 105. All empirical results hold when using the raw measure of initial claims
relative to the size of the workforce, without detrending.
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stockholder in Is is

max Et

∞

∑
τ=0

βτ
s

 (Cs
t+τ − Hs

t+τ)
1−γ

1− γ
− χ0s

∫ 1

0

L1+χ1
s,j,t+τ

1 + χ1
dj

 , (1)

where Cs
t is consumption of a composite consumption good, Hs

t = bsCs
t−1 is an external habit level

in consumption with strength bs, Lsjt denotes the supplied amount of labor services of type j in
efficiency units, βs is the time discount factor (including a component that accounts for mortality
risk), γ is the coefficient of relative risk aversion, χ0s > 0 is a weighting parameter for the disutility
of labor relative to consumption, and χ1 is the inverse of the Frisch elasticity of labor supply.

Non-stockholders. Non-stockholders have similar preferences to stockholders but face
idiosyncratic labor income risk. Due to incomplete markets, workers cannot fully diversify this
idiosyncratic risk. The preferences for household i ∈ In are given by

max Et

∞

∑
τ=0

βτ
n

 (Ci
t+τ − Hi

t+τ)
1−γ

1− γ
− χ0nΓ−(γ+χ1)

i,t+τ

∫ 1

0

L1+χ1
i,j,t+τ

1 + χ1
dj

 , (2)

with habit level Hi
t = bnΓitCn

t−1, where Cn
t−1 is aggregate consumption per capita by non-

stockholders. Individual consumption, labor services, and the preference parameters are defined
analogously to those of stockholders.

For non-stockholders, the disutility of providing labor services in efficiency units includes
the additional idiosyncratic component Γ−(γ+χ1)

it . The process Γit captures undiversifiable
idiosyncratic risk in labor income. Note that labor income in the model is endogenous, since
labor supply is elastic.6 Modeling individual income risk through the disutility of labor in
this form, combined with the assumption that the habit level fully adjusts in response to
permanent idiosyncratic shocks, implies that the problem of non-stockholders is homothetic in
the idiosyncratic component and individual labor income is proportional to Γit in equilibrium.7

Workers face permanent idiosyncratic income shocks ξit. Due to incomplete markets, non-
stockholders can only partially insure against these permanent shocks. Let ψ be the residual
exposure to idiosyncratic shocks that non-stockholders face, so that Γi,t+1 = Γiteψξi,t+1 . The
distribution of permanent shocks is modeled such that workers are subject to tail risk in income,
as in the data. Most people have a common change that is drawn from a distribution N(µ1t, σ2

ξ,1).
A fraction p2 of workers receive a large and persistent loss that is drawn from the distribution

6The literature on portfolio choice and asset pricing with idiosyncratic income risk typically treats individual labor
income as exogenous. However, for the model in this paper, it is important to have elastic labor supply to incorporate
wage setting with sticky wages.

7In this specification, Lijt/Γit can be interpreted as the number of actual hours worked by the agent on labor type
j, and Γit as individual labor productivity. The disutility of labor is modeled to offset the wealth effect of changing
labor productivity on effective labor supply such that the actual hours worked will be independent of the level of
idiosyncratic human capital Γit.
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N(µ2t, σ2
ξ,2). Similarly, a fraction p3 of workers receive a very positive shock with distribution

N(µ3t, σ2
ξ,3). Hence, the setup for residual idiosyncratic income risk is as follows:

Γi,t+1 = Γiteψξi,t+1

ξi,t+1 ∼


N(µ1t, σ2

ξ,1) with probability 1− p2 − p3

N(µ2t, σ2
ξ,2) with probability p2

N(µ3t, σ2
ξ,3) with probability p3.

(3)

The amount of tail risk depends on the aggregate state xt, which follows an AR(1) process with
persistence ρx and shocks εxt ∼ N(0, σ2

x). The conditional means of income growth for the three
types of shocks are

µ1t = µ̄t

µ2t = µ̄t + µ2 − xt

µ3t = µ̄t + µ3 − xt,

µ̄t = −
1
ψ

log
(
(1− p2 − p3)e

1
2 ψ2σ2

ξ,1 + p2eψ(µ2−xt+
1
2 ψσ2

ξ,2) + p3eψ(µ3−xt+
1
2 ψσ2

ξ,3)
)

.

(4)

Note that µ̄t is defined such that the shocks to Γit are indeed idiosyncratic conditional on the state
of the economy, i.e., E [Γi,t+1/Γit | xt] = 1.8 For deriving the equilibrium conditions of the model, I
define the key objects gn

0 (x) ≡ E
[
e−γψξt+1 | xt = x

]
and gn

1 (x) ≡ E[e(1−γ)ψξt+1 | xt = x] that capture
the precautionary saving motive associated with idiosyncratic risk.9

Consumption. The composite good is a double Dixit-Stiglitz aggregate of the consumption
goods that are produced within each sector and across sectors. Let Ckt be the consumption basket
of goods in sector k. Consumption of the composite good is given by

Ct =

(
∑

k
ω

1
ηc
k C

ηc−1
ηc

kt

) ηc
ηc−1

, (5)

where ωk is the weight of sector k. The consumption basket of each sector is aggregated from a
continuum of individual consumption goods Ck f t of firms f ∈ [0, 1] in sector k,

Ckt =

(∫ 1

0
C

ηck−1
ηck

k f t d f

) ηck
ηck−1

. (6)

8I assume that households are subject to mortality risk, accounted for in the time discount rate β. Upon death,
individuals get replaced by a newborn of the same type with initial idiosyncratic component Γ = 1, such that the
cross-sectional mean of Γit is well defined and equal to one.

9For completeness of notation, let Γit ≡ 1 for i ∈ Is, gs
0(x) ≡ 1, and gs

1(x) ≡ 1.
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Let Pt be the aggregate price index and Pkt be the price index for sector k that are determined
competitively. The elasticity of demand that firms face in sector k is ηck and may vary by k. The
elasticity of demand across sectors is ηc ≤ ηck.

Asset markets. Asset markets are assumed to be fully segmented. Stockholders own shares
in the firms that produce output for the economy, collecting firm dividends each period.
Stockholders also have access to a complete market where they can trade all state-contingent
claims among themselves. In contrast, non-stockholders can only invest in one-period risk-free
nominal bonds, the price of which is set by the monetary authority.

Limited stock market participation is empirically realistic: in the Survey of Consumer Finances
(SCF), only about 50% of U.S. households are reported to own stocks. I impose full segmentation
of asset markets to highlight the main idiosyncratic risk channel and to keep the model tractable.
In this setup, non-stockholders that face idiosyncratic risk will be hand-to-mouth in equilibrium,
so that the wealth distribution in the model is trivial. With trading between stockholders and non-
stockholders, the model would be intractable since the whole wealth distribution would become
a state variable. In addition, in reality, many stockholders also face time-varying idiosyncratic
risks that cannot fully be shared on financial markets. In fact, Guvenen, Schulhofer-Wohl, Song,
and Yogo (2017) show that cyclical income risk is highest at the bottom and top of the income
distribution. It would therefore be unrealistic for resources to flow from non-stockholders to
stockholders during a recession due to a precautionary saving motive of only the former group.
Finally, for simplicity, I also assume that stockholders cannot save at the nominal risk-free rate
set by the monetary authority so that non-stockholders are always the marginal investors in this
asset.10

3.2 Wages

I follow Erceg, Henderson, and Levin (2000) in modeling the labor market. Firms use
homogeneous labor as input in the production function, which they hire in a single labor
market where they pay the aggregate wage rate Wt. This labor input is a bundle of differentiated
labor services of various types that are aggregated in a competitive market. In particular,
aggregate labor Nt is the CES aggregate of composite labor Nνt that is provided by each agent
type at the composite wage rate Wνt:

Nt =

(
∑
ν

δ
1

ηw
ν N

ηw−1
ηw

νt

) ηw
ηw−1

, (7)

10The implications of the model would be similar if stockholders were also allowed to save at the nominal risk-free
rate, since in bad times the effective discount rate of non-stockholders is much smaller than that of stockholders due to
the precautionary saving motive and therefore non-stockholders would still be the marginal investors in the safe asset
at the relevant times.
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with elasticity of substitution ηw across composite labor by type. Composite labor for each type ν

is itself aggregated from differentiated labor types j:11

Nνt =

(∫ 1

0
N

ηw−1
ηw

νjt dj
) ηw

ηw−1

, (8)

where labor market clearing implies that

Nνjt =
∫

i∈Iν

Lijt ≡ δνLνjt. (9)

Thus, the labor that is used for production is the double composite of individual labor services of
different labor types j provided by the agents of different types ν.

Nominal wages are sticky and the quantities of labor services are determined by labor demand.
Each type of labor j provided by an agent type ν is represented by a labor union that sets the wage
rate Wνjt for that labor type optimally on behalf of the relevant households, subject to a friction a
la Calvo (1983): in each period, the wage rate can be adjusted with probability 1− θw. There are
no costs of updating the wage when getting the opportunity to do so, and infinite costs otherwise.

The labor union allocates labor services to individual members, and divides the quantity of
labor in such a way that actual labor hours are the same across agents. This means that effective
labor services are proportional to Γit, i.e., Lijt = ΓitLnjt for i ∈ In. Appendix A.2.1 shows that
this setup implies that the problem for non-stockholders is homogeneous in Γ, and therefore
individual non-stockholders choose consumption and bond holdings proportionally: Cit = ΓitCnt

and Bit = ΓitBnt.
Because of this homogeneity, households of the same agent type have the same objectives for

setting wages and therefore agree on the wage Wνjt that is optimally chosen by the labor union
when wages can be adjusted. The objective function in choosing the reset wage for the union that
represents labor type j for all agents i ∈ Iν is given by

max Et

∞

∑
τ=0

(βνθw)
τ

(
Γi,t+τ

Γit

)1−γ
−χ0ν

L1+χ1
ν,j,t+τ

1 + χ1
+

λν,t+τ

λνt

Wνjt

Pt+τ
Lν,j,t+τ

 , (10)

where Pt is the aggregate price index and λνt = (Cν
t − bνCν

t−1)
−γ. Hence, labor unions set the reset

wage to equalize the marginal benefit of receiving additional labor income in consumption utility
to the marginal labor disutility cost of working additional hours, taking into account that the wage
rate set today determines labor demand in future periods over paths where the wage rate is sticky.

Sticky wages are important for the quantitative implications of the model, since wage
rigidities dampen the decrease in wages as demand falls and make dividends more volatile. With
flexible wages, bad shocks lead to significant decreases in wages, as the rise in marginal utility

11For simplicity, I assume that the elasticity of substitution between individual types of labor services provided by
agent type ν is the same as the elasticity of substitution ηw between composite labor provided by the agents. It is
straightforward to allow for differences in these elasticities.
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makes households more willing to supply labor. This channel serves as a hedge to firm profits.
In contrast, when wages are sticky and firms face relatively high wage costs in bad states, the
volatility of dividends is amplified relative to output, which boosts the equity premium.

3.3 Production

The economy consists of a continuum of monopolistically competitive firms in each sector of the
economy. Firms face nominal rigidities; pricing is subject to a Calvo friction. In each period, firms
get a chance to update their price with probability 1− θck. Without updating, the price remains at
its current level. In addition to variation in the elasticity of substitution across goods ηck, sectors
may also vary in the Calvo parameter θck of price stickiness.

Firm production is determined by the demand for consumption goods. Firms hire a
homogeneous bundle of labor services to produce output such that total demand at the posted
price is met. The production technology is linear in labor, so that the production of firm f in
sector k is given by

Yk f t = AtN
k f
t , (11)

where At = eat is aggregate productivity and Nk f
t is the amount of labor hired by the firm. The log

of aggregate TFP follows an AR(1) process with persistence ρa and shocks εat ∼ N(0, σ2
a ). I allow

for a correlation ρax between TFP shocks εat and income risk shocks εxt.
Firms pay out profits as dividends and set their prices Pk f t to maximize the present value of

future dividends. Thus, when getting a chance to update their price, firms choose the reset price
to maximize the sum of discounted future dividends over all future paths where the price cannot
be updated. Real dividends are given by

Dk f t =
Pk f t

Pt
Yk f t −

Wt

Pt
Nk f

t , (12)

and the market value of the firm is

Vk f t = Et

[
∞

∑
τ=0

βτ
s

λs,t+τ

λst
Dk, f ,t+τ

]
. (13)

Similarly, Vkt is defined as the value of a claim to total dividends Dkt in sector k, and Vt the value
of a claim to aggregate dividends Dt.

3.4 Monetary Policy

The nominal interest rate in the economy is determined by a Taylor rule. The monetary authority
sets the one-period gross nominal interest rate It according to the rule

log It = ī + φππt + φy∆yt + zt, (14)
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where ī ≡ − log(βngn
0 (0)), πt ≡ log(Pt/Pt−1) is inflation, ∆yt ≡ log(Yt/Yt−1) is aggregate output

growth, φπ and φy are policy parameters, and zt is an AR(1) process with persistence ρz and
monetary policy shocks εzt ∼ N(0, σ2

z ).

3.5 Equilibrium

The definition of general equilibrium in the economy is standard. Households choose their
consumption optimally, given prices. Labor unions set wages optimally to maximize expected
utility for the household labor type they represent. Firms choose their prices optimally to
maximize firm value. The markets for consumption goods, labor, and financial assets clear. All
agents in the economy have rational expectations.

3.6 Calibration

The model is calibrated at a quarterly frequency. I briefly describe the calibration of the parameters
in each of the categories below. Appendix Table A.2 summarizes the baseline parameterization of
the model.

Preferences and wage determination. According to the 2019 SCF, 52.6% of households are
equity holders. I therefore assume equal shares of household types: δs = δn = 0.5. I pick
βs = 0.985 as the rate of time preferences of stockholders, so that the average annual real risk-free
rate in the stochastic model is 1.5%. The time discount factor of non-stockholders is set to
βn = βs/g0(0) to have the same discount rate for the two agent types in the deterministic steady
state. I set the risk aversion parameter γ to 10 for both types of agents, which is a commonly used
value in the asset pricing literature (e.g. Mehra and Prescott, 1985; Bansal and Yaron, 2004). The
consumption habit weight of non-stockholders is set to bn = 0.65, in line with standard values
in the literature (Christiano, Eichenbaum, and Evans, 2005; Galı́, Smets, and Wouters, 2012).
Following the empirical evidence on heterogeneity in the elasticity of substitution (see Guvenen
(2006) for a review), I assume that stockholders have a higher tolerance for volatility in their
consumption profiles and set the habit weight of stockholders to a lower value of bs = 0.45.

Consistent with Rabanal and Rubio-Ramı́rez (2005) and Christiano et al. (2005), I pick χ1 = 1
as the inverse Frisch elasticity of labor supply and set the Calvo parameter of wage determination
to θw = 0.64.12 Finally, the elasticities of substitution between labor types is set to ηw = 12, which
implies a wage markup of 9% that is in the range of estimates from the literature.13

Income risk. As described in Section 2, I estimate the parameters of a labor income process that
incorporates business cycle variation in idiosyncratic tail risk to match the empirical evidence of

12The weighting parameters on labor disutility, χ0s and χ1s, are chosen such that employment per capita is equalized
for both agent types in the deterministic steady state and normalized to one.

13Altig, Christiano, Eichenbaum, and Linde (2011) have a wage markup of 5%, while the calibration of Erceg et al.
(2000) generates a wage markup of 33%.
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Guvenen et al. (2014). The estimated process for gross individual labor income is the product of
aggregate labor income, an idiosyncratic permanent component, and an idiosyncratic transitory
income shock. The distribution of permanent income shocks ξit is modeled as described above.
The details of the estimation procedure are in Appendix A.1.

I use the estimated parameters of the idiosyncratic income process in the asset pricing model.
Empirical studies have shown that transitory shocks are smoothed by most households (see e.g.
Blundell et al., 2008). In the model, it is also much easier to self-insurance against transitory
shocks. In contrast, permanent shocks are typically much harder to insure against. I therefore
assume that transitory income shocks are fully insured, while non-stockholders are only partially
insured against permanent income shocks and have residual exposure ψ. I set the degree of
insurance such that ψ = 0.265, which is within the range of estimates by Blundell et al. (2008).14

Production. For simplicity, I focus on a two-sector version of the model. The two sectors differ
in the elasticity of substitution between consumption goods that are produced in the sector.
Sector 1 has a low elasticity of substitution between goods, while sector 2 has a high elasticity of
substitution. I set ηc = 2, ηc1 = 3, and ηc2 = 16. These elasticities imply a steady state markup
of 50% for firms in sector 1 and a markup of 7% for firms in sector 2. In the baseline version I set
the Calvo parameter θck of price stickiness to 0.75 for both sectors, which is in the range of values
that are estimated from macro data as well as micro data (e.g. Rabanal and Rubio-Ramı́rez, 2005;
Christiano et al., 2005; Nakamura and Steinsson, 2008; Galı́ et al., 2012).

The persistence of the TFP process is set to a standard value of ρa = 0.95. To parameterize the
distribution of TFP shocks, I use the measure of TFP growth of Fernald (2014). Consistent with the
empirical volatility of TFP growth and correlation between TFP growth and innovations to xt, I
select σa = 0.0075 and ρax = −0.5. The negative correlation between εat and εxt is consistent with
the countercyclicality of idiosyncratic income tail risk (Guvenen et al., 2014).

Monetary policy. The monetary policy parameters are chosen to match standard values in the
literature. I set the parameters of the Taylor rule to φπ = 1.24 and φy = 0.33/4, following
Rudebusch (2002). The baseline model does not have residual monetary policy shocks: σz = 0.

3.7 Model Dynamics

The model is solved using a third-order approximation around the deterministic steady state.
I simulate the economy for 2 500 periods – discarding the first 500 periods – and calculate the
moments of macroeconomic quantities and financial variables on the sample paths. In each
period I compute total sector dividends Dkt and cum-dividend sector values Vkt, so that the
value-weighted portfolio return of firms in sector k follows as Rkt =

Vkt
Vk,t−1−Dk,t−1

.

14Blundell et al. (2008) estimate a degree of consumption insurance such that residual exposure is 0.31 with respect
to permanent shocks to family earnings, and 0.22 when considering only male earnings.
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The model has reasonable implications for the dynamics of macroeconomic variables. The
annual volatility of output growth is 1.17% with an autocorrelation of 14%. Since dividends
are more volatile than aggregate labor income, the consumption of stockholders is exposed
to bigger fluctuations than aggregate consumption of non-stockholders. The volatility of the
consumption growth of stockholders is 1.39%, while the volatility of total consumption growth
of non-stockholders is 0.88%. The higher volatility of stockholders’ consumption growth is
consistent with empirical studies that calculate stockholders’ volatility to be at least 1.5 to 2
times larger than non-stockholders’ volatility (Mankiw and Zeldes, 1991; Attanasio et al., 2002;
Aı̈t-Sahalia et al., 2004).

The main source of risk in the model comes from fluctuations in aggregate demand by non-
stockholders due to a time-varying precautionary saving motive. The Euler equation of non-
stockholders that governs the intertemporal trade-off between consumption and saving is given
by

1 = βn · gn
0 (xt) · It ·Et

[(
Cn

t+1 − bnCn
t

Cn
t − bnCn

t−1

)−γ Pt

Pt+1

]
. (15)

Faced with additional income risk when xt is high (high value of gn
0 (xt)), non-stockholders cut

consumption to save for a potential future individual disaster. Due to nominal rigidities, output
then falls in response to the reduction in aggregate demand.

Figure 2 highlights the main mechanisms in the model by plotting the impulse response
functions to a one standard deviation increase in uninsured idiosyncratic labor income risk of
non-stockholders. An increase in idiosyncratic income risk leads to a drop in output and wages.
More notably, the negative demand shock initially leads to a slight increase (and not a decrease)
in inflation. The reason for this effect is that increased income risk is accompanied by an increased
volatility of future demand shocks, as discussed below. We further see that marginal utility rises
sharply for both agents in response to increased income risk due to habit preferences, and more
so for stockholders since they have concentrated stock ownership.

Price and wage dispersion generate inefficiencies in the model. Consumption goods as well
as labor types are imperfect substitutes, so the efficient outcome is to have equal production
and hours within each category. However, since not all prices and wages can be updated
simultaneously, the stochastic model has dispersion in prices and wages. This dispersion
increases the total number of hours worked for each level of output and the total output produced
for each level of the composite consumption basket. Price dispersion is defined as

DSpkt =
∫ 1

0

(
Pk f t

Pkt

)−ηck

d f , DSpt = ∑
k

ωk

(
Pkt

Pt

)−ηc

DSpkt. (16)

Figure 2 shows that price dispersion rises substantially when there is an increase in idiosyncratic
income risk.

Thus, due to the nominal rigidities in the model, the time-varying precautionary saving motive
of non-stockholders generates demand shocks that have real effects. While the stockholders that
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price financial claims are fully diversified, they are still exposed to fluctuations in idiosyncratic
income risk due to these aggregate demand effects. Hence, what matters in the model is that the
marginal consumer is affected by idiosyncratic tail risk, not (necessarily) the marginal investor.
This mechanism addresses a common criticism of asset pricing models with idiosyncratic risk,
namely that undiversifiable labor income risk may not directly affect the marginal utility of the
agents that are relevant for pricing financial claims in a quantitatively meaningful way.

To illustrate the differences in the dynamics of asset prices across sectors, consider the pricing
of claims to one-period ahead sector dividends. Let R̃k,t+1 be the return on the claim to the next-
period dividends of sector k. Dividends are procyclical and mainly fluctuate with changes in
income risk. As shown in Figure 2, dividends in the high-elasticity sector are much more affected
by changes in tail risk. Due to the covariance of these cash flow shocks with marginal utility,
this exposure is compensated by a risk premium. In Appendix A.2.7, I show that difference in
expected returns across the two sectors can be approximated as:

log EtR̃2,t+1 − log EtR̃1,t+1 = −(ηc2 − ηc)Covt(mt+1, p2,t+1 − p1,t+1)

− (1− ηc2)Covt(mt+1, dsp,2,t+1 − dsp,1,t+1)

− (ηc2 − ηc1)Covt(mt+1, at+1 − wpt+1 + p1,t+1 − dsp,1,t+1),

(17)

where mt+1 is the log real SDF, pkt ≡ log(Pkt/Pt), wpt ≡ log(Wt/Pt), and dspkt ≡ log(DSpkt).
The difference in expected returns consists of three components. The first component

contributes negatively to the expected return differential, since the difference in relative prices
has a slight positive correlation with marginal utility. However, the second and third components
generate a positive overall return spread. The second component is the main contributor to
the risk premium: the spread is largely driven by the positive covariance between marginal
utility and price dispersion. When income risk rises, price dispersion in the high-elasticity sector
rises much more than price dispersion in the low-elasticity sector. The third term corrects for
differences in the scaling factor across sectors due to heterogeneity in demand elasticities, and
also contributes positively to the return spread as a consequence of rising price dispersion in
response to adverse shocks.

3.8 Asset Pricing Implications

Unconditional equity returns. Table 1 reports unconditional annualized moments of asset
returns generated by the model. The first row shows the results for the baseline calibration. The
equity premium is substantial: 7.5% per year. The volatility of market returns is 23%, so that
the annual Sharpe ratio is 0.32. In the cross section, average equity returns are increasing in the
elasticity of substitution that firms face. The return premium for high-elasticity firms is 2.6% per
year. This premium is compensation for the higher exposure of these firms to changes in income
tail risk: the last column shows that the return differential has a beta of −0.7 with respect to
changes in xt.
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The other rows examine the sensitivity of these asset pricing results to variations in the key
parameter values. Rows (2)–(5) show the results for different specifications of the exogenous
processes. The asset pricing implications are similar for the case without technology shocks
(row 2), with a slightly lower Sharpe ratio but bigger return spread due to increased stock market
volatility. With uncorrelated technology shocks (row 3), volatility and risk premia are even
higher. Idiosyncratic income risk is clearly the main source of fluctuations in asset prices: without
idiosyncratic income risk (row 4), the equity premium and Sharpe ratio are much lower and there
is hardly any return spread. Row (5) focuses on monetary policy shocks as an alternative driver
of demand fluctuations and will be separately discussed below.

Row (6) highlights that with flexible prices, there is no variation in returns across sectors. The
equity premium is still substantial due to wage rigidities, but sectors are not differently exposed
to shocks and therefore the return spread is zero.

Row (7) shows the implications on asset prices when sectors vary in price stickiness instead
of demand elasticity. I adopt a two-sector version of Weber (2015) with parameter values
ηc = 8, ηck = 12, θc1 = 0.35, and θc2 = 0.85. Similar to heterogeneity in demand elasticities,
heterogeneity in price stickiness generates a return spread. This spread is consistent with the
empirical findings of Weber (2015).15 A difference between these models, as pointed out by Clara
(2019), is the relation between markups and firm riskiness. With heterogeneity in price stickiness,
the average markup is 9.2% in sector 1 versus 9.7% in sector 2 – firms in sector 2 choose slightly
higher markups because the timing of the next price change is more uncertain. In contrast, with
heterogeneity in demand elasticity, the average markup is 50.9% in sector 1 versus only 6.9% in
sector 2.

The next rows in Table 1 consider variation in preference and labor market parameters. Row (8)
shows that a higher bs of 0.65 raises the return spread across sectors but lowers the aggregate
Sharpe ratio. In row (9), we see that a higher inverse Frisch elasticity of χ1 = 2.5 makes asset
returns substantially more volatile. Row (10) considers less stickiness in wages, θw = 0.5, which
lowers the equity premium but increases the return spread. Row (11) reports lower risk premia
for a lower elasticity of labor substitution, ηw = 8.

Row (12) shows that the return spread is slightly higher for a larger elasticity of substitution
across sectors: ηc = 3. Rows (13) and (14) report the asset pricing moments for different values
of ηc2 – 11 and 21, respectively – and show that the return spread is highly dependent on (and
increasing in) the dispersion in elasticities across sectors. Finally, row (15) shows that a more
aggressive monetary policy to inflation dampens volatility and risk premia.

Source of demand shocks. Row (5) of Table 1 shows the asset pricing implications of an
alternative version of the model where demand fluctuations are not generated by idiosyncratic
income risk but by orthogonal monetary policy shocks. I set the persistence of zt to ρz = ρx = 0.88;

15I focus on heterogeneity in demand elasticities as the main source of firm heterogeneity, for consistency with the
empirical analysis that follows.
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the volatility of shocks is set to σz = 1.2% to match the volatility of non-stockholders’ aggregate
consumption growth. It is common for models in the New Keynesian asset pricing literature to
have a substantial volatility of monetary policy shocks.16 The implications for unconditional asset
prices are similar to the baseline model.17 However, the empirical volatility of monetary policy
surprises is much smaller. The volatility of monetary policy surprises on announcement days,
aggregated to a quarterly frequency, is only 0.12%.18 While clearly news about (future) monetary
policy that affects asset prices is also announced outside of FOMC meetings (see e.g. Neuhierl
and Weber, 2019), the central bank has a mandate to stabilize the economy and may therefore act
to offset economic shocks. Consistent with a “stabilizer” channel of monetary policy, Ozdagli and
Velikov (2020) show that stocks with a higher monetary policy exposure earn a lower (and not
higher) risk premium. As an alternative driver of demand fluctuations over the business cycle,
this paper proposes a time-varying precautionary saving motive due to empirically-measured
idiosyncratic income risk, so that exposure to this factor is compensated with a risk premium.

An additional feature of the model in this paper is that it naturally generates time-varying
expected returns and cross-sectional differences in this predictability, as opposed to models with
linear demand shocks that are due, for instance, to monetary policy shocks. I will discuss these
implications for return predictability next.

Predictability. Asset returns in the model are predictable by the level of idiosyncratic income
risk. I run a predictability regression of one-year ahead asset returns on xt, using overlapping
quarterly observations:

Rt:t+4 = br
0 + br

1xt + ur
t:t+4. (18)

The left plot in panel (a) of Figure 3 plots the predictive coefficients br in the baseline model for the
two sector returns and the market return. The coefficients are standardized so that a one standard
deviation increase in income risk xt is associated with a 6 to 11 percentage points higher expected
return. There is substantial heterogeneity in predictability across sectors: predictability is largest
for the high-elasticity sector that is more exposed to shocks to idiosyncratic risk.

It is important to note that returns are predictable even though shocks to x (and TFP) are
homoskedastic. Thus, in contrast to the existing literature on idiosyncratic risk and asset prices in
endowment economies, time-varying uncertainty about future idiosyncratic risk is not necessary
to have predictability. Instead, return predictability is due to the particular way that time-varying
idiosyncratic income risk generates demand shocks. For comparison, the second and third plots
in panel (a) of Figure 3 report the predictability coefficients in alternative versions of the model
where demand shocks are linear or absent.19 Even though effective risk aversion varies by the

16For example, Weber (2015) uses a volatility σz of 0.85%.
17See De Paoli, Scott, and Weeken (2010) for a discussion of the importance of demand shocks for generating large

risk premia in a New Keynesian asset pricing model.
18This volatility is calculated based on changes in Federal funds futures on days of monetary policy announcements,

over the period 1994–2007. Further details are in Section 4.6.
19The version labeled “linear demand shocks” is characterized by g0(x) ≡ eg0,0+g0,1x and g1(x) ≡ 1.
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state of the economy due to habit preferences, there is hardly any predictability in the model with
linear demand shocks – which is analogous to the version with monetary policy shocks – and no
predictability without demand shocks.20 Predictability is thus a unique feature of the model with
idiosyncratic tail risk.

The source of predictability in the model is the nonlinear relation between idiosyncratic risk
and aggregate demand. Recall that aggregate demand shocks originate from variation in the
strength of the precautionary motive over the business cycle. The precautionary saving channel
endogenously generates stochastic volatility of demand shocks. To illustrate this effect, Figure 4
plots the mean and tails of the precautionary term g0(xt+1) conditional on xt. As a result of
non-stockholders’ risk preferences combined with the process for idiosyncratic income risk, the
precautionary saving term is convex in xt. When income risk is at a high level, further changes
in income risk lead to much stronger changes in the precautionary saving motive. This convexity
leads to a stochastic and countercyclical volatility of demand shocks.

Thus, the expectation of future excess returns moves around over time due to business-cycle
variation in the conditional volatility of stock returns, generated by fluctuations in the conditional
volatility of endogenous demand shocks. To further illustrate this channel, I run the following
regression in model-simulated data:

|Rt:t+4| = ba
0 + ba

1xt + ua
t:t+4. (19)

The plots in panel (b) of Figure 3 report the predictive coefficients for these regressions. Indeed,
in the baseline model, the level of xt predicts future volatility in stock returns. In contrast, there is
no significant predictability in alternative versions of the model with linear or no demand shocks.

4 Empirical Analysis

In the model from Section 3, variation in the amount of non-diversifiable idiosyncratic income risk
over time is a key source of risk in financial markets that is reflected in asset prices. In this section,
I use the proxies for macroeconomic variation in idiosyncratic income risk that were introduced
in Section 2 to examine the asset pricing implications of the model: (1) exposure to fluctuations
in income tail risk varies across firms due to heterogeneity in demand elasticities; (2) exposure to
changes in idiosyncratic income risk is compensated by a risk premium; (3) the level of income
risk predicts future equity returns; (4) return predictability is heterogeneous across firms and
strongest for high-elasticity firms. To test these predictions, I study a new cross section of firms
that differ in exposure to the business cycle. These firms have significantly different unconditional
and conditional average returns.

20Note that since xt is significantly correlated with TFP, we would observe predictability by xt even without demand
shocks if TFP shocks would induce meaningful variation in expected returns.
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4.1 Durable versus Nondurable Good Producers

In the model, firm heterogeneity in exposure to fluctuations in income tail risk is due to differences
in demand elasticities. Since a direct measure of demand elasticity is not available in standard
data sources, I use the return differential between producers of durable goods and producers of
nondurable goods and services as a proxy for demand risk and the exposure of a firm’s equity
returns to this factor as a measure of exposure to demand shocks. By the logic of basic consumer
theory, demand effects should be bigger for more durable goods, since expenditures on those
products can be more easily shifted around over time (see e.g. Barsky, House, and Kimball, 2007).
Durable good producers are therefore more exposed to demand fluctuations than producers
of nondurables and services. Consistent with this effect, Figure A.1 illustrates the well-known
stylized fact that expenditures on durable goods tend to be much more sensitive to business
cycles than the consumption of nondurables and services.

To classify firms by the type of their output, I follow Gomes et al. (2009) that map industries,
identified by 4-digit SIC codes, to National Income and Product Accounts (NIPA) product
categories based on the 1987 benchmark input-output accounts from the Bureau of Economic
Analysis (BEA). An industry is assigned to the sector where it has the highest value added:
personal consumption expenditures (PCE) on durable goods, PCE on nondurable goods, PCE
on services, investment, government expenditures, or net exports. Using this classification, I
construct sector portfolios in the merged Compustat–CRSP database over a sample period from
1926 to 2019. I use the industry code from Compustat if available, and from CRSP otherwise.
Since the goal is to uncover variation due to aggregate demand fluctuations, I exclude firms in
the categories Financial (SIC codes 6000–6799), Utilities (4900–4949), Mining (1000–1499), and
Petroleum Refining (2900–2999).

Sector returns. I compute weekly and monthly returns on value-weighted sector portfolios.
Table 2 presents annualized statistics of monthly portfolio returns of the sector portfolios, as
well as the exposure to changes in income risk.21 As expected, the returns of durable good
producers are much more correlated with income risk fluctuations than the returns of producers
of nondurable goods and services. Consistent with (compensated) differences in risk exposures,
Gomes et al. (2009) find that the difference in average returns between durable good producers
and producers of services is significantly positive.

I use the difference in returns between producers of durable goods and producers of
nondurable goods and services (DMNS) to construct a tradable factor that proxies for aggregate
demand shocks:

RDMNS,t = Rdurables,t −
1
2
(Rnondurables,t + Rservices,t). (20)

In addition, following Papanikolaou (2011), I also compute the return spread between investment
and consumption good producers (IMC) to construct a proxy for investment-specific technology

21In linking innovations in macroeconomic variables to asset returns, I use the “beginning-of-period” timing
convention throughout, following Campbell (2003).
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shocks.

Factor betas. Motivated by the above findings, I use the DMNS beta of firm equity returns as a
proxy for exposure to demand fluctuations, which is the regression coefficient of the firm’s stock
return on the long–short DMNS portfolio return. I restrict attention to the sample of firms that
produce consumption goods. For this sample, Papanikolaou (2011) shows that heterogeneity in
exposure to investment-specific technology shocks (captured by the IMC beta) explains variation
in realized returns and is associated with a return premium. In the empirical analysis, I therefore
control for IMC exposures to account for any differences due to firm heterogeneity in future
growth opportunities, which are outside of the scope of the model. Accordingly, the return betas
for each firm are estimated in a two-factor specification:

Re
f t = β f ,0 + β f ,DMNSRDMNS,t + β f ,IMCRIMC,t + u f t. (21)

I estimate the betas for firm f at time t using weekly returns in excess of the risk-free rate
in a backward-looking rolling window over a five-year horizon, requiring at least 52 weekly
observations.

4.2 Sorting Stocks in Portfolios by DMNS Beta

The model predicts that the stochastic discount factor loads on innovations to idiosyncratic income
risk and therefore that the exposure of firm equity and cash flows to fluctuations in income tail
risk is compensated by a risk premium. Estimating the stochastic discount factor based on the full
cross section of stocks to test this prediction is difficult due to measurement error in covariances. I
therefore follow a standard approach in the finance literature by focusing on the price dynamics of
portfolios of stocks that are sorted on economically relevant dimensions to reduce measurement
error. Specifically, I sort stocks in portfolios by quintiles of the cross-sectional distribution of
β f ,DMNS and calculate monthly value-weighted returns on the quintile portfolios. The portfolios
are rebalanced at a monthly frequency.

Portfolio returns. Table 3 reports the annualized mean and volatility of the returns on five
DMNS beta-sorted portfolios. There is a clear cross-sectional pattern in portfolio returns: both the
average and the volatility of returns are increasing by quintile of the DMNS beta. The difference
between the average return on the highest quintile portfolio and the average return on the lowest
quintile portfolio is 5.96%, which is statistically and economically significant. All portfolios load
negatively on innovations to iclt, with exposures that are monotonically increasing in absolute
value by quintile. This pattern confirms that DMNS betas pick up variation in exposures to
macroeconomic fluctuations in income tail risk.

These results do not simply represent another portfolio sort on product durability, as in Gomes
et al. (2009), reflecting that firms selling goods that form a consumption stock have generally
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different risk characteristics from firms selling goods that provide a consumption flow. Instead,
the return differences from a sort on DMNS betas hold within sectors and industries. Appendix
Table A.3 shows that we get similar results on portfolio returns when restricting the sample to
producers of nondurables and services only. The results are also robust to sorting firms in quintiles
of the DMNS beta by industry, using the Fama-French 30 industry classification, as reported in
Appendix Table A.4.22

Systematic risk. Are the differences in average portfolio returns due to a compensation
for exposure to systematic risk? The bottom rows of Table 3 apply the CAPM and Fama–
French–Carhart four-factor model to the returns on the DMNS beta-sorted portfolios and report
annualized alphas and betas with respect to these factor models. Average excess returns on the
portfolios are explained by the CAPM: the alphas are not significantly different from zero for all
but one of the portfolios. The market betas of the portfolios are significant and monotonically
increase from the first to the fifth DMNS beta-sorted portfolio. The high–low portfolio has
a market beta of 0.6, and this market beta explains the return spread across portfolios. The
four-factor model shows similar patterns. Thus, the DMNS beta of firm equity picks up exposure
to systematic risk. Despite the empirical failures of the CAPM in describing the general relation
between risk and expected returns (see Fama and French, 2004, for a review), the CAPM works
well in explaining return differences across DMNS-sorted portfolios. In Section 4.4, I explore
whether exposure to time-varying income risk can rationalize these findings.

4.3 Firm Panel Regressions

To further analyze differences in exposures, financial characteristics, and equity returns across
firms, this section describes the results of firm-level panel regressions.

Firm returns. The portfolio-level findings on equity returns by DMNS beta also hold in a panel
regression of individual firm returns. To rule out the possibility that the differences in average
returns are explained by other well-known financial channels, I control for various alternative
firm characteristics. I estimate the following regression specification:

Re
f t = b0 + b1QDMNS

f t + b2QIMC
f t + b′X f t + ε f t, (22)

where QDMNS
f t is the DMNS beta quintile and QIMC

f t is the IMC beta quintile of the firm. The
controls X f t include time or industry–time fixed effects, as well as controls for other firm

22The results on portfolio returns by DMNS beta also hold when doing a two-way sort of portfolios by DMNS beta
and IMC beta (Table A.5), or when sorting firms purely by DMNS beta based on a single-factor specification (Table A.6).
In addition, the results are also robust to the sample of firms that are included in the portfolios: Table A.7 describes the
returns on portfolios that are based on all types of firms, not just consumption good producers, and Table A.8 reports
the results for consumption good producers when firms in the Utilities, Mining, and Petroleum Refining categories are
included in the sample.
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characteristics that are known to be associated with differences in expected returns across firms.
Appendix A.3 describes the construction of these variables.

Columns (1)–(4) of Table 4 report the estimates of these panel regressions for individual firm
equity returns at a monthly frequency. Consistent with the earlier findings on portfolio returns,
the beta on the DMNS return spread is associated with a significantly higher average return. The
coefficient only slightly changes when including industry–year fixed effects, again highlighting
that the results hold within industries. The relation between DMNS beta and average firm
returns continues to be significantly positive when controlling for the size of the company and the
book-to-market ratio in column (3), and thus cannot be explained by the size or value premium.
The results are also robust to including additional controls for the beta on the aggregate stock
market, idiosyncratic volatility, profitability, leverage, turnover, and the bid-ask spread, as shown
in column (4).

Markups. Consistent with the model predictions, we have seen that firms that are more
exposed to fluctuations in income tail risk have higher average returns. In the baseline model,
firm heterogeneity in exposure to demand shocks is due to heterogeneity in the elasticity of
demand. However, firms could differ in their exposures to aggregate demand fluctuations for
other reasons. An alternative source of heterogeneity would be variation in the frequency of
price adjustment, as in Weber (2015). While both demand elasticity and the frequency of price
adjustment are not directly observable in standard data sources, the model predictions on firm
markups provide a way to differentiate between these sources of heterogeneity as an explanation
for the empirical differences in firm returns and exposures. As discussed in Section 3, the two
types of cross-sectional firm differences have opposite implications for the sign of the relation
between demand exposures and average markups in the model (see also Clara, 2019).

Columns (5)–(7) of Table 4 report the estimated coefficients of annual firm-level panel
regressions of markups on firm characteristics. Controlling for industry–time fixed effects,
average markups are declining in DMNS betas. Hence, high-exposure firms on average have
relatively low markups. This finding is consistent with the baseline version of the model where
firms are heterogeneous in demand elasticities, and inconsistent with a version of the model
where firms differ in price stickiness.

4.4 Risk Premium Estimates

Next, I turn to cross-sectional asset pricing tests to formally examine whether exposure to
fluctuations in income tail risk is compensated by a risk premium. Can the cross-sectional
differences in average portfolio returns from Section 4.2 be explained by heterogeneous exposures
to demand shocks that are generated by fluctuations in idiosyncratic income risk?

I estimate the compensation for exposures to possible risk factors in a linear factor model
specification where expected returns are an affine function of factor betas. Risk premia are
estimated in a two-stage procedure. In the first stage, I estimate betas from time-series regressions
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of the monthly excess returns of each portfolio p on risk factors F:

Re
pt = βp,0 + β′pFt + εpt. (23)

In the second stage, I then run a cross-sectional regression of average excess returns on the
estimated betas to estimate risk premia λ:

ET[Re
pt] = λ0 + β̂′pλ + νp. (24)

I compute standard errors of the estimated risk premia by putting the joint two-step procedure in
the GMM framework, accounting for first-stage estimation errors in the betas and cross-sectional
correlations in portfolio returns. To examine the model goodness of fit, I report the cross-sectional
R2 and the mean absolute pricing error (MAPE) of the second-stage regression.

In a first set of tests, I estimate risk premia that are associated with traded financial factors.
The main factor of interest is RDMNS, which serves as a traded proxy for demand shocks. I find
that exposure to the DMNS return spread is compensated by a risk premium that is separate from
standard risk factors. Panel A of Table 5 reports risk premium estimates based on monthly returns.
In the first three columns, the assets included in the test are the five DMNS beta-sorted portfolios.
I find a positive and significant risk premium on the DMNS return spread in column (1). As
previously suggested by Table 3, column (2) shows that the CAPM also works well on the DMNS
beta-sorted portfolios, although the average pricing error is slightly larger. However, in a joint
estimation in column (3), the premium on the DMNS spread is significant but the premium on the
market portfolio is no longer significant.

In columns (4)–(8) of Panel A of Table 5, I expand the set of assets for estimation by adding
the standard 25 Fama-French portfolios sorted on size and book-to-market on top of the five
DMNS beta-sorted portfolios. The estimated risk premium on the DMNS return spread is again
significantly positive. This risk premium is still positive when adding the market, size, and book-
to-market factors to the set of risk factors. The risk premium on the market portfolio is no longer
positive. The four-factor specification that includes RDMNS performs substantially better than the
standard three-factor model on this set of portfolios: the R2 rises from 0.57 to 0.75.

As a second step, I focus on risk premia estimates for non-traded (macroeconomic) factors,
and in particular on the risk premium directly associated with measured idiosyncratic income
tail risk. In the model, differences in expected returns arise from heterogeneity in exposure to
fluctuations in income tail risk. I use the returns on the five DMNS beta-sorted portfolios to
test the prediction that exposure to income tail risk is priced. The first two columns of Panel B
of Table 5 report estimated risk premia on the two measures of income risk, icl and x, using
quarterly portfolio returns. Consistent with the model prediction, the estimated risk premium
on idiosyncratic income risk is positive and significant. The two measures give nearly identical
results. Heterogeneity in exposure to idiosyncratic income risk explains 80% of the cross-sectional
differences in average portfolio returns on the DMNS beta-sorted portfolios.
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Since idiosyncratic income risk is countercyclical, it could just be the case that these risk
premium estimates pick up general heterogeneity in portfolio exposures to the business cycle
and are not specifically driven by the nature of time-varying income risk. However, I find
that the results are unique to the particular macroeconomic measure of labor market frictions.
The remaining columns of Panel B compare the risk premium estimates for income tail risk to
risk premia on other macroeconomic factors: changes in measured TFP (column 3), utilization-
adjusted TFP (column 4), aggregate consumption (column 5), industrial production (column 6),
the variance of stock returns (column 7), and the term spread (column 8). In contrast to the results
in columns (1) and (2) for measures of labor market risk, the other macroeconomic indicators
are not significant at the 5% level. Income risk also performs better than other macroeconomic
variables in terms of the cross-sectional R2 and MAPE.

4.5 Cash Flow Exposures

The empirical results presented thus far have shown a significant dispersion in average returns
in portfolios that are sorted by exposure to the DMNS return spread. Consistent with the
model predictions, exposure to innovations to idiosyncratic risk in labor income explains return
differences across these portfolios. In the model, heterogeneity in expected returns is due to
differences in cash flow exposures to aggregate demand shocks generated by time-varying
idiosyncratic income risk. In this section, I examine whether differences in the exposures of firm
cash flows are consistent with the documented differences in the properties of stock returns across
portfolios.

To analyze cash flows, I use two measures from Compustat data on financial statements: sales
and operating income, where operating income is measured as sales minus the cost of goods
sold. In addition, I use data on dividend payments from CRSP. I compute cash flow measures
at the portfolio level by aggregating cash flows of the firms that are in the portfolio at an annual
frequency. For computing cash flow growth in year t, I fix the composition of the portfolio at the
beginning of t − 1 and measure cash flows for the same portfolio in both t − 1 and t. Panel A
of Table 6 reports summary statistics on operating income growth, sales growth, and dividend
growth for each portfolio. In line with a cash flow risk channel, the volatility of portfolio cash
flow growth is heterogeneous and increases with the DMNS beta of the portfolio.

Furthermore, the sensitivity of cash flows to changes in labor income risk is heterogeneous
across portfolios in a way that is consistent with the main model mechanism. Panel B of Table 6
describes the exposure of operating income growth for the market portfolio and the five DMNS
beta-sorted portfolios to changes in x, at an annual frequency. Changes in market-level cash
flows are negatively related to income risk, and cash flow exposures are strongly heterogeneous:
portfolios with high DMNS beta have a significant cash flow exposure to changes in x, while the
cash flow growth of portfolios with a low DMNS beta is not significantly related to changes in x.
Panel C reports similar results for sales growth.

Panel D of Table 6 shows that the findings on cash flows extend to the properties of firm
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dividends. Annual dividend growth for the market portfolio is significantly negatively related
to changes in income tail risk. Exposures are again strongly heterogeneous across portfolios: for
firms in the top quintile by DMNS beta, the relation between dividend growth and income risk is
strongly negative, while no such relation exists for low-exposure firms.

Section 4.2 showed that the cross-sectional spread in equity returns also holds within
industries. The same is true for cash flows. I repeat the analysis for the set of portfolios
constructed by sorting firms in quintiles of the DMNS beta distribution by industry. Appendix
Table A.9 reports the relation between cash flow growth measures for these portfolios and
changes in income risk. The findings are very close to those in Table 6.

4.6 Monetary Policy Announcements

As a test of whether heterogeneity in the exposure of stock returns and firm cash flows to income
tail risk is consistent with a demand channel interpretation, I next study the reaction of stock
prices to unanticipated monetary policy actions. While changes in idiosyncratic income risk (and
not monetary policy shocks) are the main driver of risk premia in the model presented in Section 3,
we would still expect to see significant and heterogeneous stock price responses to monetary
policy surprises if demand effects are important. It is well known that stock prices are highly
responsive to policy announcements (Bernanke and Kuttner, 2005). I find that firms with high
DMNS betas indeed have stronger stock price responses to monetary policy surprises than firms
with low DMNS betas.

Following Bernanke and Kuttner (2005), I measure daily stock returns on days with monetary
policy announcements. Monetary policy surprises are identified from the daily prices of Federal
funds futures contracts before and after announcements by calculating the change in the target
rate that is implied by the change in the price of current-month futures contracts. The expected
component of the rate change is then given by the actual change in the Federal funds rate minus
the surprise change. I use combined data on futures prices and realized Federal funds target rates
from 1989 to 2007.23 Before 1994, the timing of policy actions is ambiguous, since changes in
the funds rate target were unannounced, and days of monetary actions often coincide with labor
market reports. I follow Kuttner (2001) in defining the timing of the news and I exclude days
with the release of an employment report from the sample. I additionally report the results for
the period 1994–2007 where there is no ambiguity over the timing. Starting from 2008, the zero
lower bound becomes binding and monetary policy is conducted with a target range instead of
a specific point. For robustness, I also report the results for the period 1994–2019 using only the
surprise component that is measured purely from futures rates.

Table 7 reports the results from regressing daily portfolio returns on monetary policy changes
on announcement days. The first column lists the average equity responses to surprise and

23I exclude the September 17, 2001 and January 22, 2008 observations from the sample, since the monetary policy
announcements on those days coincided with major news that triggered large stock market movements before the
announcement itself.
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expected changes in the target rate. Replicating the seminal finding from Bernanke and Kuttner
(2005), an unexpected increase in the nominal interest rate leads to a significant reduction in asset
prices. There are no significant effects for expected changes in the target rate. The findings are
similar for the two alternative sample periods in columns (3) and (5) – a 25 basis points surprise
increase in the target rate roughly leads to a one percent decline in stock prices on average.

The second column of Table 7 shows that the stock price response to monetary policy surprises
is heterogeneous across firms. Controlling for industry–date fixed effects, the interaction terms
between surprise target rate changes and both QDMNS

f t and QIMC
f t are significantly negative. Thus,

the stock prices of firms with high DMNS betas react more strongly to monetary policy surprises,
as would be predicted by the model. Notably, average stock returns on days with monetary policy
announcements are significantly higher for firms with high DMNS betas, which means that the
cross-sectional return spread is particularly large on days with important macroeconomic news.
This finding is again consistent with a risk premium interpretation. The results from column (2)
also hold for the alternative sample periods in columns (4) and (6).

4.7 Stock Return Predictability

In addition to cross-sectional differences in the unconditional distribution of firm equity returns,
the model also generates time-series variation in expected returns: the current level of income
risk predicts future equity returns. Importantly, this predictability is heterogeneous by firm
exposure to demand shocks. I next evaluate these predictions by testing whether stock returns
are predictable by measured income risk in the data.

Following the predictive regressions run on model-simulated data in Section 3, I regress future
stock market returns over various horizons on the current level of income tail risk as measured
by iclt (monthly) or xt (quarterly), using overlapping data from 1967–2019. For the predictive
regressions, I standardize all predictors such that they have a unit standard deviation. First,
column (1) of Table 8 reports the results of this regression for aggregate stock market returns.
Consistent with the findings of Schmidt (2016), increased labor market uncertainty, as captured
by initial claims to unemployment, predicts higher future returns on the market portfolio. A one
standard deviation increase in iclt is associated with an addition return of 2.9% over the next year.
For the sample period in this paper, the coefficient of the one-year ahead return on iclt is significant
at a 10% confidence level but not at the 5% level. Using the alternative income risk measure xt in
quarterly data yields consistent results.24

Second, I find that return predictability is strongly heterogeneous across firms. Columns (2)–
(7) of Table 8 show that the predictive coefficients for the DMNS beta-sorted portfolios
monotonically increase with the portfolio exposures. While income risk does not predict returns
on low-exposure stocks, the excess returns of high-exposure quintile portfolios are strongly
predictable. In particular, income tail risk predicts the spread between high- and low-exposure

24Recall that xt is directly measured from the distribution of income growth rates, but in contrast to iclt, this measure
is not available in real time.
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stocks. A one standard deviation increase in iclt is associated with an additional return of more
than 10% on the top quintile portfolio in excess of the bottom quintile portfolio over the next year.
This coefficient is highly statistically significant. The excess return on the high–low exposure
portfolio is also predictable at horizons of three months and two years, and similarly holds when
using the alternative measure xt in quarterly data. Not surprisingly, the predictive coefficient of
cumulative returns increases with the horizon.

The results on stock market predictability are not due to a correlation with other well-known
financial market predictors. In Table 9, I control for alternative predictors in predictive regressions
for the high–low exposure portfolio excess return. Panel A includes financial variables that have
been proposed as predictors in the literature, in monthly forecasting regressions of one-year ahead
returns with icl as the main predictor. In particular, I include controls for eleven standard monthly
forecasting variables studied in Welch and Goyal (2008). For brevity, I report the results for a
subset of seven of those – the remaining four variables that are not included are not significant.25

We see that the financial predictors do not perform well in this sample period and including these
variables does not alter the finding that income tail risk is a strong predictor of the high–low
exposure portfolio excess return.

Like the risk premium estimates in Section 4.4, the predictability results are not driven by a
generic relation between business cycle indicators and future stock returns. Panel B of Table 9
reports the estimated coefficients of predictive regressions for the high–low exposure portfolio
excess return at a quarterly frequency, using xt as the main predictor and controlling for other
macroeconomic indicators. The results are specific to the particular macroeconomic measure of
labor income tail risk. For instance, controlling for capacity utilization at the macroeconomic level
in column (1) does not materially affect predictability by income risk. Column (2) shows that the
predictability of the high–low exposure portfolio return is not explained by the durable goods
expenditure–stock ratio from Gomes et al. (2009). Columns (3)–(6) illustrate that predictability
by income tail risk is also robust to controlling for other business cycle indicators, such as the
investment-to-capital ratio, inflation, consumer sentiment, and building permits.

4.8 Time-Varying Firm Risk

For expected returns to be varying over time, the volatility of stock returns or the price of risk
need to vary over time. In the model, predictability of firm equity returns comes from time-series
variation in the volatility of demand shocks: in bad times, the volatility of future cash flow shocks
is amplified due to the nonlinearity of the precautionary saving motive. In this last part of the
empirical analysis, I test the hypothesis that return predictability in the data is due to variation in
the conditional volatility of equity returns and firm cash flow growth, by regressing the absolute
value of future equity returns and cash flow growth on the current level of income risk.

First, panel A of Table 10 reports the results from regressing the absolute value of future

25These four other monthly predictors are the earnings–price ratio, default return spread, book-to-market ratio, and
long-term yield.
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portfolio returns on the current level of income risk. The first column shows that the level of
income risk is positively related to the absolute value of future market returns, although this
relation is not statistically significant. The remaining columns highlight that, consistent with the
results on conditional average returns, predictability of the future volatility of excess returns is
strongly heterogeneous and monotonically increases across the DMNS beta-sorted portfolios. The
volatility of high-exposure firm returns is positively and significantly linked to the level of income
tail risk, while the future volatility of low-exposure firm returns is not correlated with measured
idiosyncratic income risk.

Second, as a direct test of whether stochastic volatility in stock returns is due to a time-varying
volatility of firm cash flow shocks, I repeat the analysis for the volatility of future firm cash flow
growth. Panel B reports predictive coefficients using the same specification as before, now applied
to the absolute value of one-year ahead operating income growth. For firms in the top quintile of
DMNS betas, a higher level of income risk predicts a significantly higher conditional volatility of
future cash flow growth. There is no relation for low-exposure firms. Panel C of Table 10 applies
the same strategy to the absolute value of five-year ahead dividend growth. While the coefficients
for future dividend growth are not monotonic across portfolios, the (weakly) positive relation
between the current level of income tail risk and the absolute value of future dividend growth of
high-exposure firms is consistent with a countercyclical cash flow volatility for these firms.

5 Conclusion

Households face substantial tail risk in individual labor income, and the magnitude of this risk has
been shown to fluctuate over the business cycle. This paper proposes a general equilibrium New
Keynesian production-based asset pricing model where variation in idiosyncratic labor income
risk drives the joint dynamics of macroeconomic outcomes and asset prices. Uninsured income
risks affect the aggregate demand for consumption goods through a precautionary savings motive
that is countercyclical. These demand effects strongly amplify cyclicality in firm cash flows.
In the cross section, firms with more elastic demand are more exposed to fluctuations in the
amount of idiosyncratic income risk. This additional riskiness of firms with high demand elasticity
is compensated by a significant risk premium in equity returns. Due to nonlinearities in the
precautionary saving motive, average returns are countercyclical and tail risk in labor income
is a predictor of future returns.

The predictions of the model are supported by empirical patterns in equity returns. I proxy
for demand-based risk by the Durables Minus Nondurables and Services (DMNS) return spread.
In a new portfolio sort on the beta of equity returns on this DMNS factor, I show that firms with
high DMNS betas earn an economically and statistically significant average return of several
percentage points in excess of firms with low DMNS betas. Both the returns and the cash flows
of firms with high DMNS betas are significantly more negatively associated with changes in
income tail risk than firms with low DMNS betas, consistent with a risk-based explanation
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where idiosyncratic income risk is a priced source of risk in the cross section of stocks. In
line with the model predictions, the current level of income risk predicts future excess returns
and this predictability monotonically increases in firm exposure. Overall, these results imply
that a time-varying precautionary saving motive due to idiosyncratic income risk can explain
why firm earnings and asset prices strongly comove with the business cycle, and suggest that
firms with bigger exposures to demand fluctuations earn a larger risk premium than firms with
lower exposures to compensate for differences in cash flow risk, and that this risk premium is
countercyclical due to time variation in future cash flow risk.
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Figures and Tables

Figure 1: Time Series of Income Risk Measures x and iclt
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Notes: This figure plots the time series of two measures of idiosyncratic labor income
risk: (1) the skewness process xt (solid line) that is estimated from the cross-sectional
moments of 1-year, 3-year, and 5-year income growth rates over time, and (2) the
macroeconomic series iclt (dashed line) that is defined as the number of initial claims to
unemployment relative to the size of the labor force. NBER recession dates are shaded.
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Figure 2: Model IRFs to Increase in Income Risk
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Notes: This figure plots impulse response functions (IRFs) with respect to a one standard deviation
positive shock to idiosyncratic income risk xt in the baseline model.
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Figure 3: Predictability in Model
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(b) Absolute Excess Returns
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Notes: This figure plots the coefficients of predictive regressions in model-simulated data. In panel (a),
the dependent variable is the four-quarters ahead value-weighted return on the firms in sector 1 (S1), the
market (MKT), and sector 2 (S2), respectively. In panel (b), the dependent variable is the absolute value of
the four-quarters ahead value-weighted return. The left column shows the results for the baseline model
with shocks to income risk. The middle and right columns consider alternative versions of the model
with linear demand shocks and no demand shocks, respectively.
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Figure 4: Idiosyncratic Income Risk and the Precautionary Saving Motive
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Notes: This figure plots the relation between income tail risk x and the precautionary
saving term g0(x). The solid line plots g0(xt) when current income tail risk xt is x. The
dashed and dotted lines describe the distribution of g0(xt+1) conditional on xt = x.
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Table 1: Equity Returns in General Equilibrium Model

Mean Volatility SR β∆x

MKT S1 S2 S2-S1 MKT S1 S2 S2-S1 MKT S2-S1

(1): Baseline 7.53 7.10 9.68 2.58 23.43 21.07 32.73 11.89 0.32 -0.70

(2): No technology shocks 7.28 6.75 9.92 3.18 25.73 23.16 35.85 12.88 0.28 -0.91

(3): Uncorrelated shocks 9.69 9.01 13.04 4.03 29.07 26.22 40.38 14.50 0.33 -0.89

(4): No idiosyncratic risk 2.08 2.03 2.28 0.26 13.47 13.11 14.83 1.81 0.15 -0.06

(5): No idiosyncratic risk, 6.68 6.58 7.80 1.22 19.12 18.35 25.42 12.47 0.35 -0.04

monetary policy shocks

(6): No price stickiness 6.48 6.48 6.48 -0.00 20.59 20.59 20.59 0.00 0.31 0.00

(7): Heterogeneity in price stickiness, 7.73 5.62 10.72 5.10 28.84 19.17 38.97 20.23 0.27 -1.18

homogeneous demand elasticities

(8): bs = 0.65 4.87 4.39 7.20 2.81 24.59 22.22 33.96 12.03 0.20 -0.70

(9): χ1 = 2.5 14.19 13.64 16.79 3.15 35.53 33.35 44.22 11.68 0.40 -0.39

(10): θw = 0.5 5.20 4.59 8.43 3.84 22.51 19.38 35.02 16.09 0.23 -1.06

(11): ηw = 8 5.23 4.86 7.24 2.38 20.17 17.75 29.85 12.57 0.26 -0.79

(12): ηc = 3 7.66 7.08 9.69 2.61 24.31 21.25 32.87 11.84 0.32 -0.69

(13): ηc2 = 11 7.05 6.84 7.70 0.87 21.70 20.38 25.36 5.18 0.32 -0.30

(14): ηc2 = 21 8.19 7.50 13.29 5.79 25.49 22.07 43.34 21.57 0.32 -1.25

(15): φπ = 1.3 5.98 5.74 7.18 1.44 19.99 18.38 26.36 8.37 0.30 -0.50

Notes: This table describes the annualized moments of equity returns for the baseline model of Section 3, and
for various alternative parameter values. The first four columns report mean returns, columns (5)–(8) report the
volatility, column (9) reports the Sharpe ratio, and column (10) reports the return beta with respect to ∆x. The
described portfolios are the market portfolio (MKT), the value-weighted return of the firms in sectors 1 (S1) and
2 (S2), and the return spread between sector 1 and sector 2 (S2-S1).
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Table 2: Excess Returns on Sector Portfolios

Services Nondurables Durables Investment Other DMNS

Mean 6.63∗∗∗ 8.63∗∗∗ 9.63∗∗∗ 8.97∗∗∗ 8.63∗∗∗ 1.99
(1.82) (1.69) (2.53) (2.58) (2.09) (1.37)

Volatility 17.60 16.36 24.47 24.95 20.24 13.33

Exposures

∆icl -0.15∗∗∗ -0.13∗∗ -0.30∗∗∗ -0.26∗∗∗ -0.27∗∗∗ -0.16∗∗∗

(0.05) (0.06) (0.07) (0.07) (0.06) (0.04)

Notes: This table reports annualized moments of monthly returns in excess
of the 30-day Treasury-bill rate for sector portfolios, using the mapping of 4-
digit SIC codes to output types from Gomes et al. (2009). The DMNS portfolio
return is defined as RDMNS,t = Rdurables,t − 1

2 (Rnondurables,t + Rservices,t). Portfolio
exposures are measured by the univariate beta with respect to ∆icl. The sample
period is 1926M7–2019M12; exposures are measured from 1967–2019. Standard
errors are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Excess Returns on DMNS Beta-Sorted Portfolios

DMNS Beta

Low 2 3 4 High High–Low

Mean 5.22∗∗∗ 8.15∗∗∗ 9.01∗∗∗ 8.56∗∗∗ 11.18∗∗∗ 5.96∗∗∗

(1.59) (1.69) (2.10) (2.32) (2.68) (2.00)

Volatility 15.34 16.25 20.19 22.32 25.75 19.21

Exposures

RDMNS -0.06 0.10 0.39∗∗∗ 0.60∗∗∗ 1.20∗∗∗ 1.26∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.08) (0.06)

∆icl -0.10∗∗ -0.12∗∗ -0.16∗∗∗ -0.25∗∗∗ -0.31∗∗∗ -0.21∗∗∗

(0.05) (0.05) (0.05) (0.06) (0.07) (0.05)

CAPM

αCAPM -0.10 1.89∗∗∗ 0.92 -0.45 1.20 1.30
(0.91) (0.73) (0.74) (0.77) (1.07) (1.57)

RMKT 0.67∗∗∗ 0.79∗∗∗ 1.02∗∗∗ 1.14∗∗∗ 1.26∗∗∗ 0.59∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.04) (0.05)

4-Factor Model

α4F 0.77 1.99∗∗∗ 0.76 -1.22 1.72 0.95
(1.00) (0.74) (0.76) (0.79) (1.33) (1.90)

RMKT 0.70∗∗∗ 0.82∗∗∗ 0.98∗∗∗ 1.09∗∗∗ 1.20∗∗∗ 0.50∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.03) (0.04)

RHML -0.13∗∗∗ -0.03 0.11∗∗∗ 0.18∗∗∗ 0.14∗∗∗ 0.27∗∗∗

(0.05) (0.03) (0.03) (0.03) (0.05) (0.07)

RSMB -0.11∗∗ -0.11∗∗∗ 0.11∗∗∗ 0.12∗∗∗ 0.05 0.16∗∗

(0.05) (0.03) (0.04) (0.03) (0.04) (0.07)

RMOM -0.04 0.01 -0.03 0.01 -0.10∗ -0.06
(0.04) (0.02) (0.02) (0.03) (0.06) (0.08)

Notes: This table reports annualized moments of monthly returns in excess
of the 30-day Treasury-bill rate for five portfolios of firms that produce
consumption goods, sorted by their DMNS beta. Preranking return betas are
calculated in a two-factor specification using weekly data and a window of
five years. Portfolios are value weighted and are rebalanced monthly. Risk
exposures are measured by univariate betas with respect to RDMNS and ∆icl.
I also report the alphas and betas with respect to the CAPM and the Fama-
French-Carhart four-factor model. The sample period is 1927M7–2019M12;
exposures are measured from 1967–2019. Standard errors are reported in
parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Firm-Level Regressions of Equity Returns and Markups

Equity Return Markup

(1) (2) (3) (4) (5) (6) (7)

DMNS beta 0.806∗∗ 0.719∗∗∗ 0.672∗∗ 1.064∗∗ 1.003 -3.341∗∗∗ -3.800∗∗∗

quintile (0.366) (0.265) (0.284) (0.437) (1.230) (1.058) (1.040)

IMC beta -0.949 -0.664 -0.603 -0.077 -7.955∗∗∗ -5.799∗∗∗ -4.425∗∗∗

quintile (0.612) (0.418) (0.408) (0.413) (1.760) (1.300) (1.130)

Log ME 0.072 -1.448∗∗∗ 9.342∗∗∗

(0.397) (0.450) (1.160)

Log B/M 2.737∗∗∗ 1.873∗∗∗ 6.561∗∗∗

(0.526) (0.621) (1.544)

Market beta -1.031
(1.560)

Idiosyncratic -1.231∗∗∗

volatility (0.320)

Profitability 5.113∗∗∗

(1.745)

Leverage 0.665∗∗

(0.299)

Turnover -49.054
(65.215)

Bid-ask -1.273∗∗∗

spread (0.253)

Time FE Yes No No No Yes No No
Industry x time FE No Yes Yes Yes No Yes Yes
Observations 589666 550088 508419 297631 43133 39812 38323
R2 0.161 0.334 0.335 0.300 0.029 0.269 0.281

Notes: This table reports estimated coefficients from firm-level regressions of monthly equity
returns (columns 1–4) and annual markups (columns 5–7) on the DMNS beta quintile of the
firm, controlling for the IMC beta quintile and various other controls. Industry fixed effects
are by 4-digit SIC code. The sample includes firms with a lagged CRSP closing price of at least
$5. The sample period is 1963–2019. The results are expressed in percentage terms. Standard
errors are reported in parentheses and are two-way clustered by firm and date.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Estimated Risk Premia

A. Monthly 5 DMNS Portfolios 5 DMNS, 25 FF Portfolios

Traded Factors (1) (2) (3) (4) (5) (6) (7) (8)

RDMNS 3.80∗∗ 3.48∗∗ 6.26∗∗∗ 6.66∗∗∗ 4.45∗∗∗

(1.49) (1.47) (2.14) (1.59) (1.48)

RMKT 7.87∗∗∗ 5.23 6.36∗∗ 3.92 -2.45 -8.60∗∗

(2.99) (4.43) (3.20) (3.88) (2.99) (3.87)

RHML 4.34∗∗∗ 4.41∗∗∗

(1.28) (1.28)

RSMB 1.35 1.90
(1.17) (1.17)

Intercept 5.63∗∗∗ 0.74 3.26 4.51∗∗∗ 2.74 5.19 10.73∗∗∗ 16.72∗∗∗

(1.58) (2.34) (3.82) (1.59) (2.64) (3.31) (2.32) (3.29)

MAPE 0.75 0.78 0.73 1.49 1.61 1.49 1.19 0.96
R2 0.80 0.80 0.82 0.37 0.25 0.38 0.57 0.75

B. Quarterly 5 DMNS Portfolios

Non-Traded Factors (1) (2) (3) (4) (5) (6) (7) (8)

∆icl -11.35∗∗

(5.49)

∆x -11.59∗∗

(5.61)

∆ TFP 2.30∗

(1.26)

∆ TFP (util-adj) -3.84
(2.90)

∆ log consumption 2.34
(1.91)

∆ log industrial 2.92∗

production (1.63)

∆ stock -2.67
variance (1.67)

∆ term spread 5.37
(4.71)

Intercept 3.42 4.59∗ 2.37 10.20∗∗ -2.90 5.16∗ 1.54 4.83
(2.57) (2.41) (2.86) (4.73) (7.46) (2.68) (3.35) (3.75)

MAPE 0.91 0.93 1.05 1.16 1.06 1.16 0.93 1.14
R2 0.80 0.78 0.74 0.53 0.69 0.63 0.73 0.67

Notes: This table reports risk premium estimates for various monthly traded factors (panel A)
and quarterly non-traded factors (panel B), estimated on the five DMNS beta-sorted portfolios. In
columns (5)–(8) of panel A, the set of portfolios is expanded with the 25 Fama-French portfolios
sorted on size and book-to-market. The risk premium is the slope of a cross-sectional regression
of average portfolio returns on portfolio betas. Betas are estimated from a time series regression
for each portfolio. The Mean Absolute Pricing Error (MAPE) and R2 of the cross-sectional
regressions are reported as measures of goodness-of-fit. Average returns and betas of monthly
predictors are measured over the full sample period 1927M7 – 2019M12. Quarterly betas are
estimated over the period 1967Q3 – 2019Q3. The results are expressed in percentage terms. GMM
standard errors are reported in parentheses, accounting for correlation in the residuals across
assets and estimation error in calculating the first-stage betas.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Portfolio Cash Flow Exposures

DMNS Beta

Market Low 2 3 4 High High–Low

A. Summary Statistics

Operating income growth
Mean (%) 7.31 7.34 7.36 8.33 7.26 6.11 -1.23
Volatility (%) 4.44 5.77 3.94 4.29 5.16 11.83 12.57

Sales growth
Mean (%) 6.84 7.28 6.94 7.84 7.17 5.54 -1.74
Volatility (%) 4.02 5.13 4.39 4.05 4.61 7.13 7.69

Dividend growth
Mean (%) 6.54 6.27 7.86 7.04 5.22 6.19 -0.07
Volatility (%) 6.15 14.06 5.24 12.20 12.75 21.48 26.76

B. Operating Income Growth Exposures

∆x -0.16∗∗∗ -0.00 -0.05 -0.06 -0.17∗∗∗ -0.56∗∗∗ -0.56∗∗∗

(0.04) (0.05) (0.03) (0.03) (0.05) (0.10) (0.10)

R2 0.270 0.000 0.027 0.033 0.208 0.444 0.393

C. Sales Growth Exposures

∆x -0.11∗∗∗ -0.00 -0.02 -0.02 -0.08∗ -0.30∗∗∗ -0.29∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.05) (0.06) (0.07)

R2 0.146 0.000 0.003 0.006 0.065 0.345 0.292

D. Dividend Growth Exposures

∆x -0.17∗∗∗ 0.01 -0.05 -0.28∗ 0.04 -0.72∗∗∗ -0.72∗∗∗

(0.06) (0.12) (0.05) (0.14) (0.23) (0.16) (0.22)

R2 0.151 0.000 0.015 0.106 0.002 0.218 0.143

Notes: This table reports summary statistics and exposures for annual operating income growth, sales
growth, and dividend growth, as well as their univariate betas with respect to changes in income tail risk
∆x, for the market portfolio and quintile portfolios by DMNS beta. Operating income is sales minus the
cost of goods sold. Sales and cost of goods sold are from Compustat. Dividends are from CRSP. Portfolio
cash flow growth from t− 1 to t is measured by fixing the portfolio weights at the beginning of t− 1. The
sample period is 1967–2019. The results are expressed in percentage terms. Standard errors are reported
in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Stock Price Responses to Monetary Policy Surprises

1989–2007 1994–2007 1994–2019

(1) (2) (3) (4) (5) (6)

Surprise change -3.88∗∗∗ -5.63∗∗∗ -4.68∗∗∗

(1.17) (1.14) (1.41)

Expected change 0.24 0.25
(0.34) (0.35)

Surprise change -0.30∗∗ -0.49∗∗∗ -0.42∗∗

× DMNS beta quintile (0.15) (0.15) (0.20)

DMNS beta quintile 2.32∗∗ 2.87∗∗∗ 3.92∗∗∗

(0.92) (1.06) (1.24)

Surprise change -1.08∗∗ -1.67∗∗∗ -1.45∗∗

× IMC beta quintile (0.49) (0.58) (0.57)

IMC beta quintile -1.28 -1.49 -0.03
(1.32) (1.69) (1.23)

Industry × year FE No Yes No Yes No Yes
Observations 167070 163452 125270 122479 198062 192081
R2 0.008 0.194 0.015 0.195 0.008 0.238

Notes: This table reports estimated coefficients from regressions of daily firm
stock price changes on surprise and expected changes in the Federal Funds rate,
and their interactions with the DMNS beta quintile and IMC beta quintile of the
firm, on days with monetary policy announcements. Industry fixed effects are
by 4-digit SIC code. The sample includes firms with a lagged CRSP closing price
of at least $5. The three different sample periods are 1989–2007, 1994–2007, and
1994–2019, excluding September 17, 2001 and January 22, 2008. The results are
expressed in percentage terms. Standard errors are reported in parentheses and
are two-way clustered by firm and date.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Return Predictability Across Portfolios and by Horizon

DMNS Beta

Market Low 2 3 4 High High–Low

A. Monthly Frequency

3 months ahead icl 0.71 -0.13 0.12 0.84 1.38∗ 2.50∗∗∗ 2.63∗∗∗

(0.59) (0.51) (0.51) (0.63) (0.75) (0.91) (0.65)

R2 0.008 0.000 0.000 0.010 0.021 0.052 0.086

12 months ahead icl 2.87∗ -0.16 0.63 3.32 5.21∗∗ 10.23∗∗∗ 10.39∗∗∗

(1.68) (1.66) (1.85) (2.06) (2.22) (3.12) (2.22)

R2 0.028 0.000 0.002 0.034 0.066 0.177 0.278

24 months ahead icl 2.38 -1.40 -1.63 1.41 4.35 13.98∗∗ 15.38∗∗∗

(3.01) (2.85) (3.88) (4.31) (4.48) (5.75) (3.91)

R2 0.009 0.003 0.004 0.003 0.022 0.153 0.254

B. Quarterly Frequency

1 quarter ahead x 1.14∗ 0.06 0.66 1.49∗∗ 2.09∗∗ 2.60∗∗ 2.54∗∗∗

(0.67) (0.57) (0.56) (0.70) (0.82) (1.07) (0.81)

R2 0.018 0.000 0.007 0.026 0.043 0.052 0.082

4 quarters ahead x 3.92∗ 0.24 2.26 5.08∗∗ 7.37∗∗∗ 10.08∗∗∗ 9.84∗∗∗

(2.04) (1.97) (1.90) (2.10) (2.19) (3.38) (2.58)

R2 0.048 0.000 0.019 0.074 0.124 0.161 0.239

8 quarters ahead x 3.14 -1.21 0.39 3.33 6.65 11.27∗ 12.48∗∗∗

(3.56) (3.86) (3.54) (4.15) (4.15) (5.96) (4.80)

R2 0.015 0.002 0.000 0.014 0.048 0.095 0.165

Notes: This table reports estimated coefficients from predictive regressions of cumulative future
excess returns on measures of current idiosyncratic income risk, for the market portfolio and
quintile portfolios by DMNS beta. The income risk measures iclt and xt are standardized to
have a unit standard deviation. The sample period consists of overlapping data from 1967–
2019. Standard errors are corrected for heteroskedasticity and autocorrelation using Newey-
West estimation with maximum lag length equal to the horizon minus 1, and are reported in
parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Comparison of Predictors for the High–Low DMNS Beta Return Spread

A. Monthly Predictors (1) (2) (3) (4) (5) (6) (7)

icl 10.40∗∗∗ 10.37∗∗∗ 10.45∗∗∗ 8.84∗∗∗ 10.33∗∗∗ 9.82∗∗∗ 10.63∗∗∗

(2.23) (2.19) (2.13) (1.49) (2.23) (1.89) (2.06)

Dividend 0.21
yield (1.70)

T-bill rate -0.49
(1.75)

Term spread 1.87
(1.51)

Default 4.67∗∗

spread (2.25)

Long term 1.03
return (0.65)

Stock 3.11∗∗∗

variance (1.20)

Net issuing -3.06
(2.36)

R2 0.278 0.279 0.287 0.328 0.281 0.302 0.302

B. Quarterly Predictors (1) (2) (3) (4) (5) (6)

x 8.09∗∗∗ 10.36∗∗∗ 10.27∗∗∗ 10.19∗∗∗ 10.17∗∗∗ 8.97∗∗∗

(2.43) (2.44) (2.60) (2.40) (2.39) (2.31)

Capacity -3.67∗

utilization (1.95)

Durables 1.05
expenditure-stock ratio (2.23)

Investment-capital 1.38
ratio (2.37)

Inflation -3.47∗∗

(1.48)

Consumer 0.60
sentiment (2.26)

Building -3.44∗

permits (1.82)

R2 0.263 0.241 0.243 0.268 0.240 0.266

Notes: This table reports estimated coefficients from predictive regressions of the cumulative
one-year ahead return of the high-minus-low DMNS beta long-short portfolio on measures of
current idiosyncratic income risk and alternative return predictors. All return predictors are
standardized to have a unit standard deviation. The sample period consists of overlapping
data from 1967–2019. Standard errors are corrected for heteroskedasticity and autocorrelation
using Newey-West estimation with maximum lag length equal to the horizon minus 1, and are
reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Predictability of the Volatility of Returns and Cash Flows

DMNS Beta

Market Low 2 3 4 High High–Low

A. 1-Year Returns

x 1.54 -1.32 0.58 2.10 2.62 6.84∗∗ 8.17∗∗∗

(1.14) (1.08) (1.20) (1.44) (1.65) (2.91) (2.64)

R2 0.020 0.014 0.003 0.028 0.036 0.136 0.212

B. Operating Income Growth

x 0.61 0.47 0.02 -0.58 -0.21 2.38∗∗ 1.91
(0.54) (0.68) (0.41) (0.51) (0.60) (1.01) (1.16)

R2 0.023 0.009 0.000 0.020 0.002 0.092 0.049

C. 5-Year Dividend Growth

x 0.10 5.17∗∗∗ -1.86 7.31∗∗ 3.45 8.66∗ 3.49
(1.94) (1.60) (1.97) (3.24) (3.37) (4.82) (5.62)

R2 0.000 0.161 0.017 0.104 0.033 0.059 0.009

Notes: This table reports estimated coefficients from predictive regressions of the absolute
value of cumulative 12-month ahead excess returns (panel A, at a monthly frequency),
one-year ahead operating income growth (panel B, annual frequency), and five-year ahead
dividend growth (panel C, annual frequency) on measured idiosyncratic income risk, for
the market portfolio and quintile portfolios by DMNS beta. The income risk measure xt is
standardized to have a unit standard deviation. The sample period consists of overlapping
data from 1967–2019. Standard errors are corrected for heteroskedasticity and autocorrelation
using Newey-West estimation with maximum lag length equal to the horizon minus 1, and
are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix

A.1 Tail Risk in Labor Income over the Business Cycle

To quantify time-varying idiosyncratic income risk, I estimate the parameters of a model for
individual labor income. The income process is a simplified version of McKay (2017), where
individual income growth is subject to tail risk and the tails of the distribution depend on
macroeconomic conditions. The model is estimated by targeting the moments of the cross-
sectional distribution of income growth rates reported by Guvenen et al. (2014).

Labor income process. Consider the following process for realized quarterly household labor
earnings Ỹit, that are subject to idiosyncratic risk:

Ỹit = WtLtΘitUit (A.1.1)

log Θit = log Θi,t−1 + ξit, (A.1.2)

where Uit = euit is a transitory income shock that has a lognormal distribution, uit ∼ N(− 1
2 σ2

u , σ2
u),

and ξit is a permanent idiosyncratic shock. The aggregate component of individual labor income
is given by WtLt. For the purpose of estimating the idiosyncratic labor income process, aggregate
labor income is treated as given. In the general equilibrium model, wages Wt and aggregate labor
supply Lt are determined endogenously by clearing the labor market.

Permanent idiosyncratic income shocks are drawn from one of three normal distributions:

ξi,t+1 ∼


N(µ1t, σ2

ξ,1) with probability 1− p2 − p3

N(µ2t, σ2
ξ,2) with probability p2

N(µ3t, σ2
ξ,3) with probability p3,

(A.1.3)

where the amount of risk that households face depends on the aggregate state of the economy as
given by xt:

µ1t = µ̄t (A.1.4)

µ2t = µ̄t + µ2 − xt (A.1.5)

µ3t = µ̄t + µ3 − xt (A.1.6)

µ̄t = − log
(
(1− p2 − p3)e

1
2 σ2

ξ,1 + p2eµ2−xt+
1
2 σ2

ξ,2 + p3eµ3−xt+
1
2 σ2

ξ,3

)
. (A.1.7)

With a relatively large probability of 1− p2 − p3, household receive the first shock type, which
is the “typical” outcome. The second shock type is a negative tail event, with an average loss
conditional on the state of the economy of µ2t and location parameter µ2 < 0. The third shock is a
positive tail event, with conditional average gain µ3t and location parameter µ3 > 0. The process
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xt captures variation in the skewness of income growth rates over the business cycle. When xt is
high (low), both tails of the distribution are shifted to the left (right). The normalization factor µ̄t

is determined such that Et[eξi,t+1 ] = 1 conditional on the aggregate state, ensuring that the shock
is idiosyncratic.26

Macroeconomic indicators. Following McKay (2017), I assume that the processes for aggregate
income growth (∆ log WtLt) and time-varying income risk (xt) are linear combinations of
quarterly macroeconomic indicators. I construct the following macroeconomic variables based
on the FRED database of the Federal Reserve Bank of St. Louis: the short-term unemployment
rate (ũs = (UNEMPLOY − UNEMP15OV)/CLF16OV), medium-term unemployment rate (ũm =

(UNEMPLOY15− UNEMP27OV)/CLF16OV), long-term unemployment rate (ũl = UNEMP27OV/CLF16OV),
average weekly hours (PRS85006023), and initial claims to unemployment relative to the size
of the labor force (ICSA/CLF16OV). All series are HP filtered with smoothing parameter 105 to
remove very low-frequency trends.

First, I assume that income tail risk is given by xt = X′xtφx. In the set of macroeconomic
variables Xxt, I include (1) the short-term unemployment rate, (2) the long-term unemployment
rate, (3) average weekly hours, and (4) initial claims to unemployment relative to the labor force.
For computational convenience, the matrix of macroeconomic indicators Xx across periods is
transformed into its principal components.

Second, let Xwt be the set of macroeconomic indicators for aggregate income growth. I assume
that aggregate income growth is given by ∆ log WtLt = X′wtφw − xtφwx. In Xwt, I include (1)
average year-on-year income growth from Guvenen et al. (2014), transformed from annual to
quarterly observations by dividing growth rates equally over quarters, (2) the ratio of medium-
term unemployment to previous-period short-term unemployment, and (3) a constant. Again, Xw

is transformed into its principal components for numerical convenience.

Simulation. For given parameter values of the income process, I calculate the moments of the
distribution of labor income growth by simulating a panel of individual labor income realizations.
I simulate the trajectories of aggregate wages and tail risk, idiosyncratic income shocks, and
mortality over the sample period 1967–2019 for a panel of 100 000 individuals.

The simulations are initialized with a permanent income level Γ = 1 for all individuals.27

Guvenen et al. (2014) exclude observations where income is below a minimum threshold (1 300
in 2005). I similarly exclude observations below 1 300/50 000 = 2.6% of average income. For
comparison with the data, the quarterly simulations of individual income from the model are
aggregated to annual observations. Based on the aggregate income observations I then calculate
the moments of the distribution of individual income growth.

26Households have a survival probability of 1− ω in each period. I set ω = 1/160 so that mortality risk is 2.5% per
year. Due to mortality risk, the cross-sectional variance of the permanent component Θit is finite.

27The parameter estimates do not depend on the initial income distribution since the targeted statistics are moments
of income growth rates.
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Estimation. I estimate the parameters of the income process by targeting the annual moments of
the income growth distribution reported by Guvenen et al. (2014) for incomes observed between
1978 and 2011. The sample moments are the 10th percentile (p10), the median (p50), and the 90th
percentile (p90) of income growth over 1-year, 3-year, and 5-year horizons. The objective of the
procedure is to minimize the sum of squared residuals for each year and each horizon, where the
residuals are defined as

• (p50model − p50data)/p90data;
• (p50model − p10model)/(p50data − p10data)− 1;
• (p90model − p50model)/(p90data − p50data)− 1.

In addition to these annual observations, I also add to the objective the distance between the
average location of p10 and p90 in the model and in the data for each horizon.

Starting with an initial guess for the parameters of the income process, I simulate the model,
compute the value of the objective function, and update the parameter values. These steps are
repeated until the loadings of aggregate income growth and xt on the macroeconomic indicators
and the parameters σu, σξ,1, σξ,2, σξ,3, p2, p3, µ2, and µ3 that minimize the objective function have
been determined. To limit the degrees of freedom, I impose the restrictions p2 = p3 and σξ,2 = σξ,3.

Results. Table A.1 reports the estimated parameters of the labor income process. Figure A.2 plots
the annual average and percentiles of the income growth distribution in the model compared
to the data. The income process fits the moments of labor income growth in the data well, in
particular over longer horizons.

Variation in the distribution of income risk over time is captured by the tail risk process xt.
Section 2 discusses the time series for xt that results from the estimation. Figure A.3 illustrates how
the distribution of permanent income growth depends on the macroeconomic state by plotting
the log density of the permanent shock ξ for x = −σ̄ (expansion) and x = σ̄ (recession), where
σ̄ = 0.143 is the unconditional standard deviation of x. The figure shows that when x is high (i.e.,
when idiosyncratic risk is high), the density significantly shifts to the left. In particular, while the
center of the distribution is relatively stable, the right tail becomes much smaller and the mass at
the left tail increases considerably.

A.2 Model Derivations

This section contains the derivations for the New Keynesian asset pricing model discussed in
Section 3.

A.2.1 Households

Stockholders. Stockholders earn income from labor as well as firm profits, as they are the
holders of firm equity. They derive utility from the consumption of the composite consumption
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good and can trade a complete set of state-dependent claims among themselves. The utility
maximization problem of the representative stockholder is given by

max Et

∞

∑
τ=0

βτ
s

 (Cs
t+τ − Hs

t+τ)
1−γ

1− γ
− χ0s

∫ 1

0

L1+χ1
s,j,t+τ

1 + χ1
dj


s.t. PtCs

t =
∫ 1

0
WsjtLsjtdj + Pt

Dt

δs
.

(A.2.1)

The budget constraint says that stockholders’ consumption expenditures, PtCs
t , are equal to total

labor income from differentiated labor services and dividend income per capita, where we have
imposed market clearing for the state-contingent claims that are in zero net supply.

Let Λst be the Lagrange multiplier on the budget constraint. The first-order condition with
respect to consumption is

(Cs
t − bsCs

t−1)
−γ = ΛstPt ≡ λst. (A.2.2)

The Euler equation for any asset that is traded by the stockholders and has real return Rt is

1 = Et [Mt+1Rt+1] , (A.2.3)

where the real SDF Mt+1 is defined by

Mt+1 = βs
λs,t+1

λst
= βs

(
Cs

t+1 − bsCs
t

Cs
t − bsCs

t−1

)−γ

. (A.2.4)

Non-stockholders. Non-stockholders face incomplete markets and only have access to a one-
period nominal bond with gross return It−1 in period t. Since asset markets are fully segmented,
non-stockholders are always the marginal holders of this asset that exists in zero net supply and
has a price that is set by the monetary authority.

The problem for agent i ∈ In is given by

max Et

∞

∑
τ=0

βτ
n

 (Ci
t+τ − Hi

t+τ)
1−γ

1− γ
− χ0nΓ−(γ+χ1)

i,t+τ

∫ 1

0

L1+χ1
i,j,t+τ

1 + χ1
dj


s.t. PtCi

t =
∫ 1

0
WnjtLijtdj + Bi,t−1 It−1 − Bit.

(A.2.5)

The individual habit level is given by Hi
t = ΓitHn

t , where Hn
t ≡ bnCn

t−1.
Next, decompose consumption and bond holdings as Ci

t = ΓitC̃i
t and Bit = ΓitB̃it. Per the

setup of the labor market in Section 3.2, the labor union for labor type j allocates employment
Lijt = ΓitLnjt to individual agent i. The non-stockholders’ utility maximization problem can be
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rewritten as

max Et

∞

∑
τ=0

βτ
n

(
Γi,t+τ

Γit

)1−γ
 (C̃i

t+τ − Hn
t+τ)

1−γ

1− γ
− χ0n

∫ 1

0

L1+χ1
n,j,t+τ

1 + χ1
dj


s.t. PtC̃i

t =
∫ 1

0
WnjtLnjtdj + B̃i,t−1 It−1

Γi,t−1

Γit
− B̃it.

(A.2.6)

Because of the permanent nature of shocks to Γit, it follows (starting with zero initial bond
holdings) that C̃i

t and B̃it do not depend on i so that optimal individual consumption and
bond holdings are proportional to the individual component of labor income: Ci

t = ΓitCn
t and

Bit = ΓitBnt, where Bnt are aggregate bond holdings of non-stockholders.28

Now, take the first-order conditions with respect to consumption:

(Cn
t − bnCn

t−1)
−γ = ΛntPt ≡ λnt. (A.2.7)

From the first-order condition w.r.t. Bnt, we get the Euler equation for the nominal risk-free asset:

1 = βn ItEt

[(
Γi,t+1

Γit

)−γ Λn,t+1

Λnt

]
= βngn

0 (xt)ItEt

[
Λn,t+1

Λnt

]
. (A.2.8)

A.2.2 Consumption Goods

Households consume the composite good Ct. This composite good is a double Dixit-Stiglitz
aggregate of the consumption goods that are produced within each sector and across sectors. Let
Ckt be the consumption basket from goods in sector k. Consumption of the composite good is
given by

Ct =

(
∑

k
ω

1
ηc
k C

ηc−1
ηc

kt

) ηc
ηc−1

, (A.2.9)

with weights ωk over the sectors. The consumption basket from sector k is aggregated from
individual consumption goods Ck f t of firms f :

Ckt =

(∫ 1

0
C

ηck−1
ηck

k f t d f

) ηck
ηck−1

. (A.2.10)

For any desired consumption level Ct of the composite good, households solve

min ∑
k

PktCkt ≡ PtCt

s.t.

(
∑

k
ω

1
ηc
k C

ηc−1
ηc

kt

) ηc
ηc−1

= Ct.
(A.2.11)

28Since nominal risk-free bonds are in zero net supply, Bnt = 0 in equilibrium.
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The first-order condition is
Pkt = ΩcC

1
ηc
t ω

1
ηc
k C

− 1
ηc

kt , (A.2.12)

with Lagrange multiplier Ωc. The solution is

Ckt = ωk

(
Pkt

Pt

)−ηc

Ct, (A.2.13)

with price index

Pt =

(
∑

k
ωkP1−ηc

kt

) 1
1−ηc

. (A.2.14)

Analogously, at the sector level,

Ck f t =

(
Pk f t

Pkt

)−ηck

Ckt (A.2.15)

Pkt =

(∫ 1

0
P1−ηck

k f t d f
) 1

1−ηck
. (A.2.16)

A.2.3 Labor Demand

A competitive labor aggregator combines labor services from individual agent and labor types,
hired at the posted wages Wνjt, into homogeneous labor that is used as an input in the production
function by firms. The problem for the labor aggregator of hiring across agent types can be written
as

min ∑
ν

WνtNνt ≡WtNt

s.t.

(
∑
ν

δ
1

ηw
ν N

ηw−1
ηw

νt

) ηw
ηw−1

= Nt.
(A.2.17)

The first-order condition of this problem is

Wνt = ΩwN
1

ηw
t δ

1
ηw
ν N

− 1
ηw

νt , (A.2.18)

with Lagrange multiplier Ωw. The solution is

Nνt = δν

(
Wνt

Wt

)−ηw

Nt, (A.2.19)

with wage index

Wt =

(
∑
ν

δνW1−ηw
νt

) 1
1−ηw

. (A.2.20)
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Similarly, within agent type, we get

Nνjt =

(
Wνjt

Wνt

)−ηw

Nνt

Wνt =

(∫ 1

0
W1−ηw

νjt dj
) 1

1−ηw

.

(A.2.21)

A.2.4 Wage Setting

Labor is demand driven: hours for labor type j by agent type ν are fulfilled at the posted wage rate
Wνjt to meet total labor demand. As a consequence, individual labor hours for individual i ∈ Iν

are given by

Lijt = ΓitLνjt =
1
δν

ΓitNνjt = Γit

(
Wνjt

Wνt

)−ηw (Wνt

Wt

)−ηw

Nt, (A.2.22)

so that the total supply of hours for labor type j of agent type ν, δνLνjt, meets the demand Nνjt.
The maximization problem for the labor union in setting the reset wage Wνjt is given by

max Et

∞

∑
τ=0

(βνθw)
τ

(
Γi,t+τ

Γit

)1−γ
−χ0ν

L1+χ1
ν,j,t+τ

1 + χ1
+ λν,t+τ

Wνjt

Pt+τ
Lν,j,t+τ

 (A.2.23)

s.t. Lν,j,t+τ =

(
Wνjt

Wν,t+τ

)−ηw (Wν,t+τ

Wt+τ

)−ηw

Nt+τ. (A.2.24)

The first-order condition is

0 = ηwEt

∞

∑
τ=0

(βνθw)
τ

(
Γi,t+τ

Γit

)1−γ

χ0ν

(
W∗νt

Wν,t+τ

)−ηw(1+χ1) (Wν,t+τ

Wt+τ

)−ηw(1+χ1) N1+χ1
t+τ

W∗νt

+ (1− ηw)Et

∞

∑
τ=0

(βνθw)
τ

(
Γi,t+τ

Γit

)1−γ

λν,t+τ

(
W∗νt

Wν,t+τ

)−ηw
(

Wν,t+τ

Wt+τ

)−ηw Nt+τ

Pt+τ

⇔

ηw

ηw − 1
χ0ν

λνt

(
Wt

Pt

)ηwχ1

Et

∞

∑
τ=0

(βνθw)
τ

(
Γi,t+τ

Γit

)1−γ (Wt+τ

Wt

)ηw(1+χ1)

N1+χ1
t+τ

=

(
W∗νt
Pt

)1+ηwχ1

Et

∞

∑
τ=0

(βνθw)
τ

(
Γi,t+τ

Γit

)1−γ λν,t+τ

λνt

(
Wt+τ

Wt

)ηw Pt

Pt+τ
Nt+τ.

(A.2.25)
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Hence, the optimal reset wage is(
W∗νt
Pt

)1+ηwχ1

=
ηw

ηw − 1
χ0νλ−1

νt

(
Wt

Pt

)ηwχ1 Fwνt

Kwνt
(A.2.26)

Fwνt = N1+χ1
t + βνθwgν

1(xt)Et

[(
Wt+1

Wt

)ηw(1+χ1)

Fw,ν,t+1

]
(A.2.27)

Kwνt = Nt + βνθwgν
1(xt)Et

[
λν,t+1

λνt

(
Wt+1

Wt

)ηw Pt

Pt+1
Kw,ν,t+1

]
. (A.2.28)

Since wage updating is time-dependent and not state-dependent, the law of motion for the real
wage is given by(

Wνt

Pt

)1−ηw

= (1− θw)

(
W∗νt
Pt

)1−ηw

+ θw

(
Wν,t−1

Pt−1

)1−ηw
(

Pt

Pt−1

)ηw−1

. (A.2.29)

A.2.5 Price Setting

Firms choose their prices to maximize the value of the firm, which is the net present value of future
dividends. Since the firms are owned by the stockholders, the stochastic discount factor that prices
claims to firm dividends is given by the marginal utility of stockholders. Real firm dividends are
given by

Dk f t =
Pk f t

Pt
Yk f t −

Wt

Pt
Nk f

t

= ωkCt

[(
Pk f t

Pkt

)1−ηck
(

Pkt

Pt

)1−ηc

− Wt

Pt

1
At

(
Pk f t

Pkt

)−ηck
(

Pkt

Pt

)−ηc
]

= ωkCt

[(
Pk f t

Pt

)1−ηck
(

Pkt

Pt

)ηck−ηc

− Wt

Pt

1
At

(
Pk f t

Pt

)−ηck
(

Pkt

Pt

)ηck−ηc
]

.

(A.2.30)

When getting the chance to update their price Pk f t, firms choose the reset price to maximize the
present value of future dividends, so that the objective is to maximize

Et

∞

∑
τ=0

(βsθck)
τ λs,t+τ

λst
Ct+τ

[(
Pk f t

Pt+τ

)1−ηck
(

Pk,t+τ

Pt+τ

)ηck−ηc

− Wt+τ

Pt+τ

1
At+τ

(
Pk f t

Pt+τ

)−ηck
(

Pk,t+τ

Pt+τ

)ηck−ηc
]

.

(A.2.31)
The first-order condition is

P∗kt
Pt

Et

∞

∑
τ=0

(βsθck)
τ λs,t+τ

λst

(
Pt

Pt+τ

)1−ηck
(

Pk,t+τ

Pt+τ

)ηck−ηc

Ct+τ

=
ηck

ηck − 1
Et

∞

∑
τ=0

(βsθck)
τ λs,t+τ

λst

(
Pt

Pt+τ

)−ηck Wt+τ

Pt+τ

1
At+τ

(
Pk,t+τ

Pt+τ

)ηck−ηc

Ct+τ.

(A.2.32)
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It follows that the optimal reset price P∗kt is given by

P∗kt
Pt

=
ηck

ηck − 1
Fpkt

Kpkt
(A.2.33)

Fpkt =
Wt

Pt

1
At

(
Pkt

Pt

)ηck−ηc

Ct + βsθckEt

[
λs,t+1

λst

(
Pt

Pt+1

)−ηck

Fp,k,t+1

]
(A.2.34)

Kpkt =

(
Pkt

Pt

)ηck−ηc

Ct + βsθckEt

[
λs,t+1

λst

(
Pt

Pt+1

)1−ηck

Kp,k,t+1

]
. (A.2.35)

The law of motion for the relative price of sector k is(
Pkt

Pt

)1−ηck

= (1− θck)

(
P∗kt
Pt

)1−ηck

+ θck

(
Pk,t−1

Pt−1

)1−ηck
(

Pt

Pt−1

)ηck−1

. (A.2.36)

A.2.6 Aggregates

We can now compute quantities and market values at the sector and aggregate level.
First, total labor demand in sector k is

Nk
t =

∫ 1

0
Nk f

t d f =
1
At

∫ 1

0
Yk f td f =

Ckt

At

∫ 1

0

(
Pk f t

Pkt

)−ηck

d f︸ ︷︷ ︸
DSpkt

, (A.2.37)

where price dispersion is

DSpkt = (1− θck)

(
P∗kt
Pkt

)−ηck

+ θckDSp,k,t−1

(
Pkt

Pk,t−1

)ηck

. (A.2.38)

The total dividend in sector k is

Dkt =
∫ 1

0
Dk f td f = ωk

(
Pkt

Pt

)1−ηc

Ct

[
1− Wt

Pt

1
At

(
Pkt

Pt

)−1

DSpkt︸ ︷︷ ︸
µ̂−1

kt

]
. (A.2.39)

Note that µ̂kt is the markup of sector k. The price of a claim to total dividends in sector k is given
by

Vkt = Et

[
∞

∑
τ=0

βτ
s

λs,t+τ

λst
Dk,t+τ

]
= Dkt + βsEt

[
λs,t+1

λst
Vk,t+1

]
. (A.2.40)

Next, turning to aggregates across sectors, total labor demand is given by

Nt = ∑
k

Nk
t =

Ct

At
∑

k
ωk

(
Pkt

Pt

)−ηc

DSpkt︸ ︷︷ ︸
DSpt

. (A.2.41)
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Aggregate dividends are

Dt = ∑
k

Dkt = Ct

[
1− Wt

Pt

1
At

DSpt︸ ︷︷ ︸
µ̂−1

t

]
, (A.2.42)

where µ̂t is the aggregate markup. The price of a claim to aggregate dividends is

Vt = Dt + βsEt

[
λs,t+1

λst
Vt+1

]
. (A.2.43)

Finally, clearing the markets for consumption goods yields the following equilibrium relations:

Ct = δsCs
t + δnCn

t = Yt (A.2.44)

Cs
t =

∫ 1

0
WsjtLsjtdj +

Dt

δs
=

(
Wst

Pt

)1−ηw
(

Wt

Pt

)ηw

Nt +
Dt

δs
(A.2.45)

Cn
t =

∫ 1

0
WnjtLnjtdj =

(
Wnt

Pt

)1−ηw
(

Wt

Pt

)ηw

Nt. (A.2.46)

A.2.7 Asset Returns

To illustrate the forces that drive cross-sectional differences in expected returns, I derive an
approximation for the pricing of claims to one-period ahead sector dividends as in Li and
Palomino (2014). Let R̃k,t+1 be the return on the claim to the next-period dividends of sector k.
Any real return R that is spanned by traded assets satisfies the fundamental asset pricing relation

1 = Et[Mt+1Rt+1]. (A.2.47)

Assume for expositional purposes that the SDF and asset returns are jointly lognormally
distributed and the continuously compounded real risk-free rate r f is constant:

Et[rt+1] +
1
2

Vart[rt+1]− r f = −Covt(mt+1, rt+1), (A.2.48)

where mt+1 ≡ log Mt+1 and rt+1 ≡ log Rt+1. Taking the difference in expected returns on the
claims to next-period dividends between the two sectors, we get

log Et[R̃2,t+1]− log Et[R̃1,t+1] = −Covt(mt+1, r̃2,t+1 − r̃1,t+1)

= −Covt(mt+1, d2,t+1 − d1,t+1).
(A.2.49)

Define pkt ≡ log(Pkt/Pt). Using (A.2.39), the difference in log dividends is given by

d2t − d1t = log ω2 − log ω1 + (1− ηc)(p2t − p1t) + log(1− µ̂−1
2t )− log(1− µ̂−1

1t ). (A.2.50)
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Next, use a log-linear approximation of sector markups:

log(1− µ̂−1
kt ) ≈ log(1− µ̂−1

k ) +
1

µ̂k − 1
(log µ̂kt − log µ̂k), (A.2.51)

where µ̂k =
ηck

ηck−1 is the steady-state markup in sector k.
Finally, let wpt ≡ log(Wt/Pt) and dspkt ≡ log(DSpkt). Plugging in the definition of markups

from (A.2.39), we obtain

log EtR̃2,t+1 − log EtR̃1,t+1 = −(1− ηc)Covt(mt+1, p2,t+1 − p1,t+1)− (ηc2 − 1)Covt(mt+1, log µ̂2,t+1)

+ (ηc1 − 1)Covt(mt+1, log µ̂1,t+1)

= −(ηc2 − ηc)Covt(mt+1, p2,t+1 − p1,t+1)

− (1− ηc2)Covt(mt+1, dsp,2,t+1 − dsp,1,t+1)

− (ηc2 − ηc1)Covt(mt+1, at+1 − wpt+1 + p1,t+1 − dsp,1,t+1).
(A.2.52)
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A.2.8 Equilibrium Conditions

This section summarizes all equilibrium conditions.

Household consumption and saving:

λνt = (Cν
t − bνCν

t−1)
−γ ν ∈ {s, n} (A.2.53)

1 = βngn
0 ItEt

[
λn,t+1

λnt
e−πt+1

]
(A.2.54)

Cs
t =

Wst

Pt

Nst

δs
+

Dt

δs
(A.2.55)

Cn
t =

Wnt

Pt

Nnt

δn
(A.2.56)

Demand and price indices for consumption goods and labor services:

Ckt = ωk

(
Pkt

Pt

)−ηc

Ct ∀ k (A.2.57)

1 =

(
∑

k
ωk

(
Pkt

Pt

)1−ηc
) 1

1−ηc

(A.2.58)

Nνt = δν

(
Wνt

Pt

)−ηw
(

Wt

Pt

)ηw

Nt ν ∈ {s, n} (A.2.59)

Wt

Pt
=

(
∑
ν

δν

(
Wνt

Pt

)1−ηw
) 1

1−ηw

(A.2.60)

Wage setting for agent type ν ∈ {s, n}:(
W∗νt
Pt

)1+ηwχ1

=
ηw

ηw − 1
χ0νλ−1

νt

(
Wt

Pt

)ηwχ1 Fwνt

Kwνt
(A.2.61)

Fwνt = N1+χ1
t + βνθwgν

1(xt)Et

[(
Pt

Wt

Wt+1

Pt+1
eπt+1

)ηw(1+χ1)

Fw,ν,t+1

]
(A.2.62)

Kwνt = Nt + βνθwgν
1(xt)Et

[
λν,t+1

λνt

(
Pt

Wt

Wt+1

Pt+1

)ηw

eπt+1(ηw−1)Kw,ν,t+1

]
(A.2.63)(

Wνt

Pt

)1−ηw

= (1− θw)

(
W∗νt
Pt

)1−ηw

+ θw

(
Wν,t−1

Pt−1

)1−ηw

eπt+1(ηw−1) (A.2.64)
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Price setting for sector k:

P∗kt
Pt

=
ηck

ηck − 1
Fpkt

Kpkt
(A.2.65)

Fpkt =
Wt

Pt

1
At

(
Pkt

Pt

)ηck−ηc

Ct + βsθckEt

[
λs,t+1

λst
eπt+1ηck Fp,k,t+1

]
(A.2.66)

Kpkt =

(
Pkt

Pt

)ηck−ηc

Ct + βsθckEt

[
λs,t+1

λst
eπt+1(ηck−1)Kp,k,t+1

]
(A.2.67)(

Pkt

Pt

)1−ηck

= (1− θck)

(
P∗kt
Pt

)1−ηck

+ θck

(
Pk,t−1

Pt−1

)1−ηck

eπt(ηck−1) (A.2.68)

DSpkt = (1− θck)

(
P∗kt
Pkt

)−ηck

+ θckDSp,k,t−1eπtηck

(
Pkt

Pt

)ηck
(

Pk,t−1

Pt−1

)−ηck

(A.2.69)

Market clearing for consumption goods:

DSpt = ∑
k

ωk

(
Pkt

Pt

)−ηc

DSpkt (A.2.70)

Yt = AtNtDS−1
pt (A.2.71)

Ct = δsCs
t + δnCn

t = Yt (A.2.72)

Dividends and total equity values:

Dkt = ωk

(
Pkt

Pt

)1−ηc

Ct

[
1− Wt

Pt

1
At

(
Pkt

Pt

)−1

DSpkt

]
∀ k (A.2.73)

Vkt = Dkt + βsEt

[
λs,t+1

λst
Vk,t+1

]
∀ k (A.2.74)

Dt = Ct

[
1− Wt

Pt

1
At

DSpt

]
(A.2.75)

Vt = Dt + βsEt

[
λs,t+1

λst
Vt+1

]
(A.2.76)

Exogenous processes and monetary policy rule:

log At = ρa log At−1 + εat (A.2.77)

xt = ρxxt−1 + εxt (A.2.78)

log It = − log(βngn
0 (0)) + φππt + φy log(Yt/Yt−1) + zt (A.2.79)

zt = ρzzt−1 + εzt. (A.2.80)
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A.2.9 Deterministic Steady State

The deterministic steady state is described by the following system of equations:

Pk

P
=

P∗k
P

=
ηck

ηck − 1
W
P

∀ k (A.2.81)

DSp = ∑
k

ωk

(
Pk

P

)−ηc

(A.2.82)

Nν = δν

(
Wν

P

)−ηw
(

W
P

)ηw

N ν ∈ {s, n} (A.2.83)

Cn =
Wn

P
Nn

δn
, Cs =

1
δs

(
N

DSp
− δnCn

)
, (A.2.84)

λν = (Cν(1− bν))
−γ ν ∈ {s, n} (A.2.85)(

Wν

P

)1+ηwχ1

=
ηw

ηw − 1
χ0νλ−1

ν

(
W
P

)ηwχ1

Nχ ν ∈ {s, n} (A.2.86)

W
P

=

(
δs

(
Ws

P

)1−ηw

+ δn

(
Wn

P

)1−ηw
) 1

1−ηw

(A.2.87)

1 = ∑
k

ωk

(
Pk

P

)1−ηc

(A.2.88)

For given values of W/P, Ws/P, Wn/P, and N, (A.2.81)–(A.2.85) can be used to obtain relative
prices and marginal utility. The values of those four unknowns then follow from solving the
four nonlinear equations (A.2.86)–(A.2.88). Given those steady state values, the other steady-state
values are straightforward:

Fwν =
N1+χ1

1− βνθwgν
1(0)

, Kwν =
N

1− βνθwgν
1(0)

, ν ∈ {s, n} (A.2.89)

Fpk =

W
P

(
Pk
P

)ηck−ηc

1− βsθck
, Kpk =

(
Pk
P

)ηck−ηc
C

1− βsθck
, ∀ k (A.2.90)

W∗ν
P

=
Wν

P
ν ∈ {s, n}, DSpk = 1 ∀ k, π = 0, (A.2.91)

C = Y = N · DS−1
p , Ck = ωk

(
Pk

P

)−ηc

C ∀ k, (A.2.92)

Dk = ωk

(
Pk

P

)1−ηc

C

[
1− W

P

(
Pk

P

)−1
]

, Vk =
Dk

1− βs
, ∀ k (A.2.93)

D = C
[

1− W
P

DSp

]
, V =

D
1− βs

. (A.2.94)
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A.3 Data Construction

This section presents additional details regarding the construction of data used for the empirical
analysis.

A.3.1 Macroeconomic Data

In addition to the macroeconomic variables used for the estimation of the income risk process,
(see Section A.1), I also obtain the following macroeconomic time series from the FRED database:

• Real personal consumption expenditures per capita on durable goods;
• Real personal consumption expenditures per capita on nondurable goods;
• Real personal consumption expenditures per capita on services;
• Current-cost net stock of durable goods;
• PCE price deflator of durable goods;
• Industrial production index;
• Total industry capacity utilization;
• University of Michigan consumer sentiment index;
• New private housing units authorized by building permits.

As a measure of aggregate consumption, I use the sum of real consumption expenditures per
capita on nondurable consumption and services. Using the above series, I also compute the
durable expenditure-stock ratio, following the approach of Gomes et al. (2009).

Finally, I obtain updated time series for changes in TFP and utilization-adjusted TFP from
Fernald (2014).

A.3.2 Financial Data

Data on monthly and daily stock returns are from CRSP. I calculate dividends from the difference
of holding period returns with and without dividends. Turnover is monthly volume as a fraction
of the number of shares outstanding. The bid-ask spread is 2× (ask− bid)/(ask + bid). Market
beta is the regression coefficient of a firm’s equity return on the market return and idiosyncratic
volatility is the volatility of the residual of this regression.

Balance sheet data is obtained from Compustat. The book-to-market ratio is the ratio of the
book value of equity to price times the number of shares outstanding. Markups are measured as
revenues minus costs of goods sold as a fraction of firm revenues. Profitability is revenue minus
cost of goods sold minus general expenses minus interest divided by the book value of equity,
and leverage is measured as the ratio of long-term debt plus debt in current liabilities to the book
value of equity.

Data on the Fama-French factors, momentum return, Treasury-bill rate, and returns on 25
portfolios sorted by size and book-to-market come from the data library of Kenneth French.
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Finally, I use data from Welch and Goyal (2008) on return predictor variables that have been
studied in the literature, updated through 2020. For details on the variables construction, I refer
the reader to Welch and Goyal (2008).

A.3.3 Monetary Policy Announcements

I follow Kuttner (2001) and Bernanke and Kuttner (2005) in measuring monetary policy shocks.
Surprises in monetary policy rates can be derived from futures contracts on the Federal funds rate.
Since monthly futures contracts are traded with a settlement price that is based on the average
Federal funds rate, the implied surprise change ∆iU

t in the target rate on day t can be derived as

∆iU
t =

D(t)
D(t)− d(t)

( f 1
t − f 1

t−1),

where f 1
t is the price of a futures contract that expires at the end of the current month, d(t) is the

current day of the month, and D(t) is the total number of days in the month. The expected change
is then computed as the realized change in the policy rate minus the surprise change.

Data on futures prices are available on Bloomberg. As described in the main text, I follow
Kuttner (2001) in defining the timing of the news before 1994. I also follow Kuttner (2001) in using
the non-scaled change in the one-month futures price when the announcement falls in the last
three days of the month, and in using the lagged two-month futures price as the base when the
announcement is on the first day of the month.
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A.4 Additional Figures and Tables

Figure A.1: Consumption Expenditures over the Business Cycle
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Notes: This figure plots the time series of real personal consumption expenditures per
capita, relative to a long-term trend, on durable goods (solid line), nondurable goods
(dashed line), and services (dotted line). The quarterly series are HP filtered with a
standard bandwith parameter of 1 600. NBER recession dates are shaded.
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Figure A.2: Distribution of Labor Income Growth Rates in Model and Data
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Notes: This figure compares moments of income growth rates in the estimated model for labor income to
the empirical counterparts over time.
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Figure A.3: Density of the Permanent Idiosyncratic Income Shock
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Notes: This figure plots the log density of the permanent shock ξ for x = −σ̄ (expansion) and x = σ̄
(recession), where σ̄ = 0.143 is the unconditional standard deviation of x.
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Table A.1: Estimated Parameter Values of the Income Process

Symbol Interpretation Value

σu Volatility of transitory component 0.404
σξ,1 Typical volatility of permanent component 0.029
σξ,2 = σξ,3 Tail volatility of permanent component 0.260
p2 = p3 Probability of tail event 0.038
µ2 Location of left tail −0.308
µ3 Location of right tail 0.347

Notes: This table reports the estimated parameters of the labor
income process. The details of the estimation procedure are in
Appendix A.1.

Table A.2: Baseline Model Parameter Values

Symbol Interpretation Value

δs Measure of stockholders 0.5
βs Time discounting of non-stockholders 0.985
βn Time discounting of non-stockholders βs/g0(0)
γ Coefficient of relative risk aversion 10
bs Habit weight stockholders 0.45
bn Habit weight non-stockholders 0.65
χ1 Inverse Frisch elasticity 1
ηw Elasticity of substitution across labor types 12
θw Wage stickiness 0.64

ω1 Consumption weight sector 1 0.5
ηc Elasticity of substitution across sectors 2
ηc1 Elasticity of substitution in sector 1 3
ηc2 Elasticity of substitution in sector2 16
θck Price stickiness 0.75

ρa Persistence of TFP 0.95
σa Volatility of TFP shocks 0.0075
ρx Persistence of income tail risk 0.88
σx Volatility of shocks to income tail risk 0.0670
ρax Correlation between TFP and tail risk shocks −0.5
ψ Transmission of idiosyncratic shocks 0.26
φπ Taylor rule inflation 1.24
φy Taylor rule output 0.33/4

Notes: This table summarizes the parameter values in the
baseline version of the general equilibrium asset pricing model,
as described in Section 3.
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Table A.3: Excess Returns on DMNS Beta-Sorted Portfolios – Nondurables and Services Only

DMNS Beta

Low 2 3 4 High High–Low

Mean 5.77∗∗∗ 7.18∗∗∗ 8.82∗∗∗ 9.84∗∗∗ 10.67∗∗∗ 4.90∗∗

(1.61) (1.69) (1.89) (2.29) (2.86) (2.15)

Volatility 15.48 16.28 18.19 22.01 27.46 20.72

Exposures

RDMNS -0.04 0.06 0.32∗∗∗ 0.51∗∗∗ 0.82∗∗∗ 0.86∗∗∗

(0.07) (0.07) (0.08) (0.07) (0.11) (0.09)

∆icl -0.11∗∗ -0.12∗∗ -0.13∗∗ -0.22∗∗∗ -0.29∗∗∗ -0.19∗∗∗

(0.05) (0.05) (0.06) (0.06) (0.08) (0.05)

Notes: This table reports annualized moments of monthly returns in
excess of the 30-day Treasury-bill rate for five portfolios of firms that
produce nondurable goods or services, sorted by their DMNS beta.
Preranking return betas are calculated in a two-factor specification using
weekly data and a window of five years. Portfolios are value weighted
and are rebalanced monthly. Risk exposures are measured by univariate
betas with respect to RDMNS and ∆icl. The sample period is 1927M7–
2019M12; exposures are measured from 1967–2019. Standard errors are
reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.4: Excess Returns on DMNS Beta-Sorted Portfolios – Sort Within Industry

DMNS Beta

Low 2 3 4 High High–Low

Mean 6.00∗∗∗ 6.90∗∗∗ 8.35∗∗∗ 9.90∗∗∗ 10.51∗∗∗ 4.52∗∗

(1.65) (1.75) (1.99) (2.29) (2.68) (1.92)

Volatility 15.85 16.81 19.17 22.03 25.78 18.44

Exposures

RDMNS 0.11 0.11 0.32∗∗∗ 0.55∗∗∗ 1.10∗∗∗ 0.99∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.08) (0.06)

∆icl -0.14∗∗ -0.13∗∗ -0.15∗∗ -0.21∗∗∗ -0.31∗∗∗ -0.17∗∗∗

(0.05) (0.05) (0.06) (0.06) (0.07) (0.05)

Notes: This table reports annualized moments of monthly returns in
excess of the 30-day Treasury-bill rate for five portfolios of firms that
produce consumption goods, sorted by their DMNS beta. The quintiles
are computed within industry (30 Fama-French industries). Preranking
return betas are calculated in a two-factor specification using weekly
data and a window of five years. Portfolios are value weighted and are
rebalanced monthly. Risk exposures are measured by univariate betas
with respect to RDMNS and ∆icl. The sample period is 1927M7–2019M12;
exposures are measured from 1967–2019. Standard errors are reported in
parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Excess Returns on Beta-Sorted Portfolios – Two-Way Sort

DMNS Beta

Low 2 3 4 High High–Low

IMC Beta:

Low 5.76∗∗∗ 8.17∗∗∗ 7.67∗∗∗ 9.50∗∗∗ 11.56∗∗∗ 5.80∗∗

(1.62) (1.67) (2.06) (2.35) (2.84) (2.48)

(2) 8.24∗∗∗ 8.49∗∗∗ 9.33∗∗∗ 10.32∗∗∗ 9.75∗∗∗ 1.51
(1.90) (1.81) (2.06) (2.39) (2.92) (2.51)

(3) 8.89∗∗∗ 9.46∗∗∗ 9.84∗∗∗ 9.09∗∗∗ 12.14∗∗∗ 3.25
(2.26) (2.20) (2.23) (2.37) (3.03) (2.33)

(4) 4.78∗ 7.10∗∗∗ 8.88∗∗∗ 9.80∗∗∗ 7.73∗∗ 2.94
(2.71) (2.52) (2.76) (2.72) (3.15) (2.34)

High 5.14 5.04 8.01∗∗ 8.93∗∗ 14.39∗∗∗ 9.25∗∗∗

(3.58) (3.38) (3.39) (3.61) (3.89) (2.87)

Average 6.56∗∗∗ 7.65∗∗∗ 8.75∗∗∗ 9.64∗∗∗ 11.11∗∗∗ 4.55∗∗

(1.99) (2.03) (2.25) (2.42) (2.91) (1.78)

Notes: This table reports annualized moments of monthly returns in
excess of the 30-day Treasury-bill rate for 25 portfolios of firms that
produce consumption goods, two-way sorted by their DMNS beta
and IMC beta. Preranking return betas are calculated in a two-factor
specification using weekly data and a window of five years. Portfolios
are value weighted and are rebalanced monthly. The sample period is
1927M7–2019M12. Standard errors are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.6: Excess Returns on DMNS Beta-Sorted Portfolios – One-Factor Specification

DMNS Beta

Low 2 3 4 High High–Low

Mean 5.83∗∗∗ 7.77∗∗∗ 8.84∗∗∗ 8.88∗∗∗ 11.19∗∗∗ 5.36∗∗∗

(1.54) (1.75) (2.10) (2.44) (2.72) (2.02)

Volatility 14.80 16.84 20.22 23.47 26.15 19.47

Exposures

RDMNS -0.07 0.22∗∗∗ 0.44∗∗∗ 0.66∗∗∗ 1.19∗∗∗ 1.25∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.07) (0.04)

∆icl -0.09∗ -0.14∗∗ -0.17∗∗∗ -0.24∗∗∗ -0.31∗∗∗ -0.22∗∗∗

(0.05) (0.06) (0.06) (0.06) (0.07) (0.05)

Notes: This table reports annualized moments of monthly returns in
excess of the 30-day Treasury-bill rate for five portfolios of firms that
produce consumption goods, sorted by their DMNS beta. Preranking
return betas are calculated in a one-factor specification (without IMC)
using weekly data and a window of five years. Portfolios are value
weighted and are rebalanced monthly. Risk exposures are measured by
univariate betas with respect to RDMNS and ∆icl. The sample period is
1927M7–2019M12; exposures are measured from 1967–2019. Standard
errors are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.7: Excess Returns on DMNS Beta-Sorted Portfolios – All Firms

DMNS Beta

Low 2 3 4 High High–Low

Mean 5.70∗∗∗ 7.85∗∗∗ 8.70∗∗∗ 9.25∗∗∗ 10.51∗∗∗ 4.81∗∗∗

(1.73) (1.78) (2.14) (2.42) (2.68) (1.71)

Volatility 16.67 17.16 20.62 23.31 25.78 16.44

Exposures

RDMNS 0.13∗ 0.28∗∗∗ 0.49∗∗∗ 0.72∗∗∗ 1.05∗∗∗ 0.92∗∗∗

(0.08) (0.07) (0.07) (0.08) (0.08) (0.04)

∆icl -0.17∗∗∗ -0.17∗∗∗ -0.22∗∗∗ -0.27∗∗∗ -0.31∗∗∗ -0.14∗∗∗

(0.06) (0.06) (0.06) (0.07) (0.07) (0.05)

Notes: This table reports annualized moments of monthly returns in excess
of the 30-day Treasury-bill rate for five portfolios of firms that produce any
type of goods, sorted by their DMNS beta. Preranking return betas are
calculated in a two-factor specification using weekly data and a window
of five years. Portfolios are value weighted and are rebalanced monthly.
Risk exposures are measured by univariate betas with respect to RDMNS

and ∆icl. The sample period is 1927M7–2019M12; exposures are measured
from 1967–2019. Standard errors are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.8: Excess Returns on DMNS Beta-Sorted Portfolios – All Non-Financial Industries

DMNS Beta

Low 2 3 4 High High–Low

Mean 5.58∗∗∗ 7.20∗∗∗ 9.34∗∗∗ 9.25∗∗∗ 10.85∗∗∗ 5.27∗∗∗

(1.53) (1.63) (1.92) (2.21) (2.63) (1.92)

Volatility 14.69 15.63 18.45 21.27 25.30 18.50

Exposures

RDMNS -0.05 0.10∗ 0.32∗∗∗ 0.52∗∗∗ 1.14∗∗∗ 1.19∗∗∗

(0.07) (0.06) (0.07) (0.07) (0.08) (0.06)

∆icl -0.07 -0.10∗ -0.13∗∗ -0.19∗∗∗ -0.30∗∗∗ -0.23∗∗∗

(0.05) (0.05) (0.05) (0.06) (0.07) (0.05)

Notes: This table reports annualized moments of monthly returns
in excess of the 30-day Treasury-bill rate for five portfolios of firms
that produce consumption goods (including firms in the categories
Utilities, Mining, and Petroleum Refining), sorted by their DMNS beta.
Preranking return betas are calculated in a two-factor specification using
weekly data and a window of five years. Portfolios are value weighted
and are rebalanced monthly. Risk exposures are measured by univariate
betas with respect to RDMNS and ∆icl. The sample period is 1927M7–
2019M12; exposures are measured from 1967–2019. Standard errors are
reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.9: Portfolio Cash Flow Exposures – Sort Within Industry

DMNS Beta

Market Low 2 3 4 High High–Low

A. Summary Statistics

Operating income growth
Mean (%) 7.31 6.94 7.75 7.87 6.97 6.32 -0.62
Volatility (%) 4.44 5.16 4.49 4.08 5.32 12.41 12.86

Sales growth
Mean (%) 6.84 7.07 7.20 7.77 6.47 5.76 -1.30
Volatility (%) 4.02 5.08 4.45 4.45 4.66 6.95 7.39

Dividend growth
Mean (%) 6.54 5.87 8.04 6.07 9.63 1.80 -4.07
Volatility (%) 6.15 15.99 7.67 8.11 15.44 31.52 36.55

B. Operating Income Growth Exposures

∆x -0.16∗∗∗ 0.02 -0.05 -0.09∗∗ -0.14∗∗ -0.55∗∗∗ -0.57∗∗∗

(0.04) (0.05) (0.03) (0.04) (0.06) (0.10) (0.10)

R2 0.270 0.003 0.023 0.105 0.144 0.390 0.394

C. Sales Growth Exposures

∆x -0.11∗∗∗ 0.01 -0.03 -0.06 -0.08 -0.27∗∗∗ -0.28∗∗∗

(0.04) (0.04) (0.04) (0.05) (0.05) (0.06) (0.06)

R2 0.146 0.001 0.011 0.041 0.052 0.298 0.289

D. Dividend Growth Exposures

∆x -0.17∗∗∗ 0.06 -0.07 -0.03 -0.43 -0.82∗∗∗ -0.88∗∗∗

(0.06) (0.14) (0.06) (0.12) (0.27) (0.21) (0.27)

R2 0.151 0.003 0.017 0.002 0.150 0.132 0.113

Notes: This table reports summary statistics and exposures for annual operating income growth, sales
growth, and dividend growth, as well as their univariate betas with respect to changes in income tail risk
∆x, for the market portfolio and quintile portfolios by DMNS beta. The quintiles are computed within
industry (30 Fama-French industries). Operating income is sales minus the cost of goods sold. Sales and
cost of goods sold are from Compustat. Dividends are from CRSP. Portfolio cash flow growth from t− 1
to t is measured by fixing the portfolio weights at the beginning of t− 1. The sample period is 1967–2019.
The results are expressed in percentage terms. Standard errors are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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